Twisted Helical Microfibers by Hierarchical Self-Assembly of an Aromatic Oligoamide Foldamer
Quan Gan
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorYing Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Hua Jiang
College of Chemistry, Beijing Normal University, Beijing 100875, China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
College of Chemistry, Beijing Normal University, Beijing 100875, China, Tel.: 0086-010-82612075; Fax: 0086-010-82612075Search for more papers by this authorQuan Gan
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorYing Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Hua Jiang
College of Chemistry, Beijing Normal University, Beijing 100875, China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
College of Chemistry, Beijing Normal University, Beijing 100875, China, Tel.: 0086-010-82612075; Fax: 0086-010-82612075Search for more papers by this authorAbstract
A series of aromatic oligoamide foldamers based on 8-fluoro amino-quinoline carboxyl acid have been synthesized and characterized. Studies show that these foldamers self-assemble to form well-defined twisted helical microfibers in chloroform-methanol (1:1, V/V) binary solvent due to the intermolecular π-π stacking and van der Waals forces of aliphatic chains, which are supported by SEM, TEM and XRD. It is also revealed that the assembly morphologies show strong dependence on the length of alkyl chains.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201300240_sm_suppl.pdf1.3 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a
Hecht, S.;
Huc, I.,
Foldamers: Structure, Properties and Applications, Wiley-VCH, Weinheim, 2007.
10.1002/9783527611478 Google Scholar
- 1b Huc, I.; Jiang, H., Organic Foldamers and Helices, Chapter in Supramolecular Chemistry: From Molecules to Nanomaterials, Eds.: J. W. Steed; P. A. Gale, John Wiley & Sons Ltd, Chichester, UK, 2012, pp. 2183–2206.
- 2 Huc, I.. Eur. J. Org. Chem., 2004, 17.
- 3 Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado, W. F.. Nature Chem. Biol., 2007, 3, 252.
- 4 Gong, B.. Acc. Chem. Res., 2008, 41, 1376.
- 5 Zhang, D.-W.; Zhao, X.; Hou, J.-L.; Li, Z.-T.. Chem. Rev., 2012, 112, 5271.
- 6 Gan, Q.; Wang, Y.; Jiang, H.. Curr. Org. Chem., 2011, 15, 1293.
- 7 Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.. Chem. Rev., 2001, 101, 3219.
- 8 Wang, Y.; Gan, Q.; Jiang, H.. Chem. J. Chin. Univ., 2011, 32, 1928 (in Chinese).
- 9 Azeroual, S.; Surprenant, J.; Lazzara, T. D.; Kocun, M.; Tao, Y.; Cuccia, L. A.; Lehn, J.-M.. Chem. Commun., 2012, 48, 2292.
- 10
Cuccia, L. A.;
Ruiz, E.;
Lehn, J.-M.;
Homo, J.-C.;
Schmutz, M..
Chem. Eur. J.,
2002,
8,
3448.
10.1002/1521-3765(20020802)8:15<3448::AID-CHEM3448>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 11
Petitjean, A.;
Cuccia, L. A.;
Lehn, J.-M.;
Nierengarten, H.;
Schmutz, M..
Angew. Chem., Int. Ed.,
2002,
41,
1195.
10.1002/1521-3773(20020402)41:7<1195::AID-ANIE1195>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 12 Cai, W.; Wang, G.-T.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T.. J. Am. Chem. Soc., 2008, 130, 6936.
- 13 Cai, W.; Wang, G.-T.; Du, P.; Wang, R.-X.; Jiang, X.-K.; Li, Z.-T.. J. Am. Chem. Soc., 2008, 130, 13450.
- 14 Gan, Q.; Bao, C.; Kauffmann, B.; Grélard, A.; Xiang, J.; Liu, S.; Huc, I.; Jiang, H.. Angew. Chem., Int. Ed., 2008, 47, 1715.
- 15 Nakanishi, T.. Chem. Commun., 2010, 46, 3425.
- 16 Maurizot, V.; Dolain, C.; Leydet, Y.; Leger, J.-M.; Guionneau, P.; Huc, I.. J. Am. Chem. Soc., 2004, 126, 10049.
- 17 Hu, H.-Y.; Xiang, J.-F.; Chen, C.-F.. Org. Biomol. Chem., 2009, 7, 2534.
- 18 Gan, Q.; Shang, J.; Kauffmann, B.; Wang, Y.; Bie, F.; Jiang, H.. Tetrahedron, 2012, 68, 4479.
- 19 Chen, Y.; Lü, Y.; Han, Y.; Zhu, B.; Zhang, F.; Bo, Z.; Liu, C.-Y.. Langmuir, 2009, 25, 8548.
- 20 He, Y.; Bian, Z.; Kang, C.; Gao, L.. Chem. Commun., 2011, 47, 1589.
- 21 Chen, Y.; Zhu, B.; Zhang, F.; Han, Y.; Bo, Z.. Angew. Chem., Int. Ed., 2008, 47, 6015.
- 22 Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang, F. A.. J. Am. Chem. Soc., 2012, 134, 15712.
- 23 Yan, D.; Zhou, Y.; Hou, J.. Science, 2004, 303, 65.