Surface Modification of Bituminous Coal and Its Effects on Methane Adsorption
Yanyan Feng
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Search for more papers by this authorWen Yang
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Search for more papers by this authorCorresponding Author
Daijun Liu
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China, Tel.: 0086-028-8540 3836Search for more papers by this authorCorresponding Author
Wei Chu
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China, Tel.: 0086-028-8540 3836Search for more papers by this authorYanyan Feng
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Search for more papers by this authorWen Yang
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Search for more papers by this authorCorresponding Author
Daijun Liu
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China, Tel.: 0086-028-8540 3836Search for more papers by this authorCorresponding Author
Wei Chu
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China
Department of Chemical Engineering, Sichuan University, Chengdug, Sichuan 610065, China, Tel.: 0086-028-8540 3836Search for more papers by this authorAbstract
This paper studied the role of O-containing groups over the coal surface in methane adsorption. The coal was modified with H2SO4, (NH4)2S2O8 or H2SO4/(NH4)2S2O8), respectively, to introduce O-containing functional groups, and characterized by proximate analysis, ultimate analysis, Boehm titration, X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption. The results of ultimate analysis, Boehm titration and XPS indicate that there were increases in terms of both the content of oxygen and the quantities of O-containing groups over the modified coals surface, especially for the carboxyl. Nitrogen adsorption shows that the modified coals possessed higher surface area and pore volume than that of 0-XQ. The methane adsorption data were measured at 298 K at pressures up to 4.0 MPa by the volumetric method and fitted well by Langmuir model. Experimental results implied that O-containing groups and pore structure affected methane adsorption. The adsorption capacities decreased as increasing quantities of O-containing groups.
REFERENCES
- 1 Luo, J. J.; Liu, Y. F.; Jiang, C. F.; Chu, W.; Jie, W.; Xie, H. P.. J. Chem. Eng. Data, 2011, 56, 4919.
- 2 Azmi, A. S.; Yusup, S.; Muhamad, S.. Chem. Eng. Process.: Process Intensification, 2006, 45, 392.
- 3 Li, S. G.; Zhang, D. F.; Cui, Y. J.; Liu, B.; Song, W. L.; Lin, W. G.. Energ. Fuel, 2011, 25, 1891.
- 4 Hao, S. X.; Wen, J.; Yu, X. P.; Chu, W.. Appl. Surf. Sci., 2013, 264, 433.
- 5 Crosdale, P. J.; Beamish, B.; Valix, M.. Int. J. Coal Geol., 1998, 35, 147.
- 6 Busch, A.; Gensterblum, Y.. Int. J. Coal. Geol., 2011, 87, 49.
- 7 Busch, A.; Gensterblum, Y.; Krooss, B. M.; Littke, R.. Int. J. Coal Geol., 2004, 60, 151.
- 8 Cui, X.; Bustin, R. M.; Dipple, G.. Fuel, 2004, 83, 293.
- 9 Dutta, P.; Bhowmik, S.; Das, S.. Int. J. Coal Geol., 2011, 85, 289.
- 10 Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W.. Int. J. Coal Geol., 2008, 73, 27.
- 11 Larsen, J. W.; Hall, P.; Wernett, P. C.. Energ. Fuel, 1995, 9, 324.
- 12 Esteves, I. A. A. C.; Cruz, F. J. A. L.; Müller, E. A.; Agnihotri, S.; Mota, J. P. B.. Carbon, 2009, 47, 948.
- 13 Pini, R.; Ottiger, S.; Burlini, L.; Storti, G.; Mazzotti, M.. Int. J. Greenh. Gas Con., 2010, 4, 90.
- 14 Švábová, M.; Weishauptová, Z.; Přibyl, O.. Fuel, 2011, 90, 1892.
- 15 Bae, J. S.; Bhatia, S. K.; Rudolph, V.; Massarotto, P.. Energ. Fuel, 2009, 23, 3319.
- 16 Murata, S.; Hosokawa, M.; Kidena, K.; Nomura, M.. Fuel Process. Technol., 2000, 67, 231.
- 17 Cuervo, M.; Asedegbeganieto, E.; Diaz, E.; Ordonez, S.; Vega, A.; Dongil, A.; Rodriguezramos, I.. Carbon, 2008, 46, 2096.
- 18 Petersen, H. I.; Rosenberg, P.; Nytoft, H. P.. Int. J. Coal Geol., 2008, 74, 93.
- 19 Bastos-Neto, M.; Canabrava, D. V.; Torres, A. E. B.; Rodriguez-Castellón, E.; Jiménez-López, A.; Azevedo, D. C. S.; Cavalcante, C. L.. Appl. Surf. Sci., 2007, 253, 5721.
- 20 Menendez, J.; Menendez, E.; Iglesias, M.; Garcia, A.; Pis, J.. Carbon, 1999, 37, 1115.
- 21 Chiang, Y. C.; Lin, W. H.; Chang, Y. C.. Appl. Surf. Sci., 2011, 257, 2401.
- 22 Li, D.; Liu, Q.; Weniger, P.; Gensterblum, Y.; Busch, A.; Krooss, B. M.. Fuel, 2010, 89, 569.
- 23 Pashin, J. C.; McIntyre, M. R.. Int. J. Coal Geol., 2003, 54, 167.
- 24 Sakurovs, R.; Day, S.; Weir, S.; Duffy, G.. Int. J. Coal Geol., 2008, 73, 250.
- 25 Day, S.; Sakurovs, R.; Weir, S.. Int. J. Coal Geol., 2008, 74, 203.
- 26 Gruszkiewicz, M.; Naney, M.; Blencoe, J.; Cole, D. R.; Pashin, J. C.; Carroll, R. E.. Int. J. Coal Geol., 2009, 77, 23.
- 27 Chalmers, G. R. L.; Marc Bustin, R.. Int. J. Coal Geol., 2007, 69, 288.
- 28 Weniger, P.; Kalkreuth, W.; Busch, A.; Krooss, B. M.. Int. J. Coal Geol., 2010, 84, 190.
- 29 Li, Z.; Ward, C. R.; Gurba, L. W.. Int. J. Coal Geol., 2010, 81, 242.
- 30 Krooss, B.; Van Bergen, F.; Gensterblum, Y.; Siemons, N.; Pagnier, H.; David, P.. Int. J. Coal Geol., 2002, 51, 69.
- 31 Shi, J. Q.; Mazumder, S.; Wolf, K.-H.; Durucan, S.. Transport Porous Med., 2008, 75, 35.
- 32 Crosdale, P. J.; Moore, T. A.; Mares, T. E.. Int. J. Coal Geol., 2008, 76, 166.
- 33 Bazula, P. A.; Lu, A. H.; Nitz, J. J.; Schüth, F.. Microporous Mesoporous Mater., 2008, 108, 266.
- 34 Wepasnick, K. A.; Smith, B. A.; Schrote, K. E.; Wilson, H. K.; Diegelmann, S. R.; Fairbrother, D. H.. Carbon, 2011, 49, 24.
- 35 Daud, W. M. A. W.; Shafeeyan, M. S. M. S.; Houshmand, A.; Arami-Niya, A.. Appl. Surf. Sci., 2011, 257, 3936.
- 36 Mangun, C. L.; Benak, K. R.; Economy, J.; Foster, K. L.. Carbon, 2001, 39, 1809.
- 37 Zhao, G. F.; Bai, P.; Zhu, H. M.; Yan, R. X.; Liu, X. M.; Yan, Z. F.. Asia-Pac. J. Chem. Eng., 2008, 3, 284.
- 38 Rosenthal, D.; Ruta, M.; Schlögl, R.; Kiwi-Minsker, L.. Carbon, 2010, 48, 1835.
- 39 Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W.; Liu, Z.; Che, Y.. Comput. Geosci., 2009, 35, 1159.
- 40 Garnier, C.; Finqueneisel, G.; Zimny, T.; Pokryszka, Z.; Lafortune, S.; Défossez, P. D. C.; Gaucher, E. C.. Int. J. Coal Geol., 2011, 87, 80.
- 41 Pan, Z.; Connell, L. D.. Int. J. Greenh. Gas Con., 2009, 3, 77.
- 42 Amarasekera, G.; Scarlett, M. J.; Mainwaring, D. E.. Fuel, 1995, 74, 115.
- 43 Sun, S.; Wu, Y. Y.; Luo, S. Z.; Chu, W.; Ni, H. Z.. Chem. J. Chin. Univ., 2011, 32, 1794.
- 44 Liu, F. S.; Chu, W.; Sun, W. J.; Xue, Y.; Jiang, Q.. J. Nat. Gas Chem., 2012, 21, 708.
- 45 Jiang, Q.; Chu, W.; Sun, W. J.; Liu, F. S.; Xue, Y.. Acta Phys.-Chim. Sin., 2012, 28, 1101.
- 46 Zhou, Y. P.; Zhou, L.. Acta Phys.-Chim. Sin., 1997, 13, 119.
- 47 Zhou, Y. P.; Bai, S. P.; Zhou, L.; Yang, B.. Chin. J. Chem., 2001, 19, 943.
- 48 Guo, L.; Wu, Z. S.. Acta Phys.-Chim. Sin., 2008, 24, 737.
- 49 Shao, X. H.; Huang, S. P.; Shen, Z. G.; Chen, J. F.. Chin. J. Chem., 2004, 22, 142.
- 50 Qu, F. F.; Chu, W.; Shi, L. M.; Chen, M. H.; Hu, J. Y.. Chin. Chem. Lett., 2007, 18, 993.
- 51 Wang, Y. L.; Du, B. Y.; Dou, X. M.; Liu, J.; Shi, B. Y.; Wang, D. S.; Tang, H. X.. Colloid Surface A, 2007, 307, 16.