Preparation of Nanoporous Carbon/Graphene Composites and Its Application in Direct Methanol Fuel Cell
Xiuhua Jin
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Qinglian Wei
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-21-64250924; Fax: 0086-21-64250924Search for more papers by this authorHaojun Huang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorMengxue Wang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Yongmin Huang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-21-64250924; Fax: 0086-21-64250924Search for more papers by this authorXiuhua Jin
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Qinglian Wei
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-21-64250924; Fax: 0086-21-64250924Search for more papers by this authorHaojun Huang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorMengxue Wang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Yongmin Huang
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-21-64250924; Fax: 0086-21-64250924Search for more papers by this authorAbstract
Nanoporous carbon/graphene composites (NCGC) are synthesized via one-step hydrothermal approach combining carbonization, where phenol and formaldehyde are used as carbon sources and triblock copolymers F127 as template. Transmission electron microscopy (TEM) and nitrogen adsorption measurements show that the synthesized NCGC samples possess high surface area over 400 m2·g−1 and mesoporous structures with interconnected pores. The electrochemical studies demonstrate that Pt catalyst with NCGC as support exhibits better eletrocatalytic activity for methanol oxidation as compared to the catalyst taking widely-used VulcanXC-72 as support. In addition, the potential formation mechanism of NCGC is discussed.
REFERENCES
- 1 Kamarudin, S. K.; Achmad, F.; Daud, W. R. W.. Int. J. Hydrogen Energy, 2009, 34, 6902.
- 2 Küver, A.; Vielstich, W.. J. Power Sources, 1998, 74, 211.
- 3 Hogarth, M. P.; Ralph, T. R.. Platinum Met. Rev., 2002, 46, 146.
- 4 Gislon, P.; Monteleone, G.; Prosini, P. P.. Int. J. Hydrogen Energy, 2009, 34, 929.
- 5 Carmo, M.; Brandalise, M.; Neto, A. O.; Spinacé, E. V.; Taylor, A. D.; Linardi, M.; Rocha Poço, J. G.. Int. J. Hydrogen Energy, 2011, 36, 14659.
- 6 Carmo, M.; Dos Santos, A. R.; Poco, J. G. R.; Linardi, M.. J. Power Sources, 2007, 173, 860.
- 7 Wang, M.-Y.; Chen, J.-H.; Cui, K.-Z.; Liu, B.; Zhou, H.-H.; Kuang, Y.-F.. Chin. J. Chem., 2006, 24, 881.
- 8 Guo, S.; Dong, S.; Wang, E.. Adv. Mater., 2010, 22, 1269.
- 9 Li, M.; Chang, Y.; Han, G.; Yang, B.. J. Power Sources, 2011, 196, 7973.
- 10 Kuo, P. L.; Chen, W. F.; Lin, C. Y.. J. Power Sources, 2009, 194, 234.
- 11 Sheng, Z. M.; Wang, J. N.. Adv. Mater., 2008, 20, 1071.
- 12 Arbizzani, C.; Beninati, S.; Manferrari, E.; Soavi, F.; Mastragostino, M.. J. Power Sources, 2007, 172, 578.
- 13 Shanahan, P. V.; Xu, L.; Liang, C.; Waje, M.; Dai, S.; Yan, Y. S.. J. Power Sources, 2008, 185, 423.
- 14 Qi, J.; Jiang, L.; Wang, S.; Sun, G.. Appl. Catal. B, 2011, 107, 95.
- 15 Huang, H.; Chen, H.; Sun, D.; Wang, X.. J. Power Sources, 2012, 204, 46.
- 16 Xin, Y.; Liu, J.-G.; Zhou, Y.; Liu, W.; Gao, J.; Xie, Y.; Yin, Y.; Zou, Z.. J. Power Sources, 2011, 196, 1012.
- 17 Xu, Z.; Yu, J.; Liu, G.. Electrochem. Commun., 2011, 13, 1260.
- 18 Kannan, A. M.; Kanagala, P.; Veedu, V.. J. Power Sources, 2009, 192, 297.
- 19 Wang, Z.-B.; Zhao, C.-R.; Shi, P.-F.; Yang, Y.-S.; Yu, Z.-B.; Wang, W.-K.; Yin, G.-P.. J. Phys. Chem. C, 2009, 114, 672.
- 20 Liang, C.; Dai, S.. J. Am. Chem. Soc., 2006, 128, 5316.
- 21 Deng, Y.; Cai, Y.; Sun, Z.; Gu, D.; Wei, J.; Li, W.; Guo, X.; Yang, J.; Zhao, D.. Adv. Funct. Mater., 2010, 20, 3658.
- 22 Wang, X. F.; Tian, Y.. Chin. J. Chem., 2010, 28, 858.
- 23 Liu, D.; Lei, J.-H.; Guo, L.-P.; Deng, K.-J.. Carbon, 2011, 49, 2113.
- 24 Xiang, Q.; Yu, J.; Jaroniec, M.. J. Am. Chem. Soc., 2012, 134, 6575.
- 25 Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J. R.. Nano Lett., 2012, 12, 4584.
- 26 Xiang, Q.; Yu, J.; Jaroniec, M.. Chem. Soc. Rev., 2012, 41, 782.
- 27 Sun, Y.; Li, C.; Shi, G.. J. Mater. Chem., 2012, 22, 12810.
- 28 Huang, C.; Li, C.; Shi, G.. Energ. Environ. Sci., 2012, 5, 8848.
- 29 Hummers, W. S.; Offeman, R. E.; J. Am. Chem. Soc., 1958, 80, 1339.
- 30 Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J.. J. Am. Chem. Soc., 2011, 133, 10878.
- 31 Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F.. Adv. Mater., 2008, 20, 4490.
- 32 Chu, P. P.; Wu, H. D.. Polymer, 2000, 41, 101.
- 33 Huang, Y.; Cai, H.; Feng, D.; Gu, D.; Deng, Y.; Tu, B.; Wang, H.; Webley, P. A.; Zhao, D.. Chem. Commun., 2008, 23, 2641.
- 34 Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L.. J. Power Sources, 2002, 105, 13.
- 35 Liu, Z.; Lee, J. Y.; Han, M.; Chen, W.; Gan, L. M., J. Mater. Chem., 2002, 12, 2453.
- 36 Gu, Y.-J.; Wong, W.-T.. Langmuir, 2006, 22, 11447.
- 37 Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J. L.; Delichatsios, M.; Ukleja, S.. J. Phys. Chem. C, 2010, 114, 19459.