A Workflow for Crystallization Process Design with Simultaneous Process Optimization and Solvent Selection based on the Perturbed-Chain Statistical Associating Fluid Theory
Nethrue Pramuditha Mendis
The Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Clear Water Bay, Hong Kong, China
Search for more papers by this authorDr. Jiayuan Wang
Zhejiang University of Technology, School of Chemical Engineering, 310014 Hang Zhou, China
Search for more papers by this authorCorresponding Author
Dr. Richard Lakerveld
The Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Clear Water Bay, Hong Kong, China
Correspondence: Dr. Richard Lakerveld ([email protected]), Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.Search for more papers by this authorNethrue Pramuditha Mendis
The Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Clear Water Bay, Hong Kong, China
Search for more papers by this authorDr. Jiayuan Wang
Zhejiang University of Technology, School of Chemical Engineering, 310014 Hang Zhou, China
Search for more papers by this authorCorresponding Author
Dr. Richard Lakerveld
The Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Clear Water Bay, Hong Kong, China
Correspondence: Dr. Richard Lakerveld ([email protected]), Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.Search for more papers by this authorAbstract
Solvent selection is a critical part of crystallization process design and is inherently intertwined with optimization of the operating conditions. Computer-aided tools can greatly assist in solving these two problems simultaneously. However, the integration of predictive thermodynamic models and process optimization tools is often complicated, which may hamper industry adoption. This work presents a workflow for simultaneous solvent selection and process optimization for solution crystallization processes based on the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state. The workflow is provided with readily executable computational tools and aims to strike a balance between the resources needed to obtain experimental input data and good prediction performance. The use of the workflow is demonstrated through a case study involving aspirin crystallization, which shows that the workflow can provide suitable solvents and operating conditions for the crystallization process based on either cooling, antisolvent, or evaporative crystallization.
Supporting Information
Filename | Description |
---|---|
cite202200123-sup-0001-misc_information.pdf351.5 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
A. T. Karunanithi, L. E. K. Achenie, R. Gani, Comput. Aided Chem. Eng.
2004, 18, 217–222. DOI: https://doi.org/10.1016/S1570-7946(04)80102-0
10.1016/S1570?7946(04)80102?0 Google Scholar
- 2 A. T. Karunanithi, L. E. K. Achenie, R. Gani, Chem. Eng. Sci. 2006, 61 (4), 1247–1260. DOI: https://doi.org/10.1016/J.CES.2005.08.031
- 3 A. T. Karunanithi, C. Acquah, L. E. K. Achenie, S. Sithambaram, S. L. Suib, R. Gani, Chem. Eng. Sci. 2007, 62 (12), 3276–3281. DOI: https://doi.org/10.1016/J.CES.2007.02.017
- 4 A. T. Karunanithi, C. Acquah, L. E. K. Achenie, S. Sithambaram, S. L. Suib, Comput. Chem. Eng. 2009, 33 (5), 1014–1021. DOI: https://doi.org/10.1016/J.COMPCHEMENG.2008.11.003
- 5 A. Fredenslund, R. L. Jones, J. M. Prausnitz, AIChE J. 1975, 21 (6), 1086–1099. DOI: https://doi.org/10.1002/aic.690210607
- 6 O. L. Watson, S. Jonuzaj, J. McGinty, J. Sefcik, A. Galindo, G. Jackson, C. S. Adjiman, Org. Process Res. Dev. 2021, 25 (5), 1123–1142. DOI: https://doi.org/10.1021/acs.oprd.0c00516
- 7 S. Jonuzaj, O. L. Watson, S. Ottoboni, C. J. Price, J. Sefcik, A. Galindo, G. Jackson, C. S. Adjiman, in Computer Aided Chemical Engineering, Vol. 48, Elsevier, Amsterdam 2020.
- 8 M. H. Muhieddine, S. K. Viswanath, A. Armstrong, A. Galindo, C. S. Adjiman, Chem. Eng. Sci. 2022, 264, 118125. DOI: https://doi.org/10.1016/J.CES.2022.118125
- 9 V. Papaioannou, T. Lafitte, C. Avendaño, C. S. Adjiman, G. Jackson, E. A. Müller, A. Galindo, J. Chem. Phys. 2014, 140, 054107. DOI: https://doi.org/10.1063/1.4851455
- 10 J. Wang, R. Lakerveld, AIChE J. 2018, 64 (4), 1205–1216. DOI: https://doi.org/10.1002/aic.15998
- 11 J. Wang, R. Lakerveld, Comput. Aided Chem. Eng. 2018, 44, 1051–1056. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50170-1
- 12 J. Wang, L. Zhu, R. Lakerveld, Processes 2020, 8 (1), 63. DOI: https://doi.org/10.3390/pr8010063
- 13 N. P. Mendis, J. Wang, R. Lakerveld, Comput. Aided Chem. Eng. 2020, 48, 805–810. DOI: https://doi.org/10.1016/B978-0-12-823377-1.50135-X
- 14 N. P. Mendis, J. Wang, R. Lakerveld, Ind. Eng. Chem. Res. 2022, 61 (31), 11504–11517. DOI: https://doi.org/10.1021/acs.iecr.1c05012
- 15 J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 2001, 40 (4), 1244–1260. DOI: https://doi.org/10.1021/IE0003887
- 16 J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 2002, 41 (22), 5510–5515. DOI: https://doi.org/10.1021/IE010954D
- 17 A. Bardow, K. Steur, J. Gross, Ind. Eng. Chem. Res. 2010, 49 (6), 2834–2840. DOI: https://doi.org/10.1021/ie901281w
- 18 S. Chai, Q. Liu, X. Liang, Y. Guo, S. Zhang, C. Xu, J. Du, Z. Yuan, L. Zhang, R. Gani, Comput. Chem. Eng. 2020, 135, 106764. DOI: https://doi.org/10.1016/j.compchemeng.2020.106764
- 19 S. Chai, E. Li, L. Zhang, J. Du, Q. Meng, AIChE J. 2022, 68 (1), e17499. DOI: https://doi.org/10.1002/AIC.17499
- 20 Q. Liu, L. Zhang, K. Tang, L. Liu, J. Du, Q. Meng, R. Gani, AIChE J. 2021, 67 (2), e17110. DOI: https://doi.org/10.1002/AIC.17110
- 21
H. J. M. Kramer, R. Lakerveld, in Handbook of Industrial Crystallization (Eds: A. S. Myerson, D. Erdemir, A. Y. Lee), 3rd ed., Cambridge University Press, Cambridge
2019.
10.1017/9781139026949.007 Google Scholar
- 22
H. J. M. Kramer, S. K. Bermingham, G. M. Van Rosmalen, J. Cryst. Growth
1999, 198–199 (PART I), 729–737. DOI: https://doi.org/10.1016/S0022-0248(98)01179-8
10.1016/S0022?0248(98)01179?8 Google Scholar
- 23www.gams.com/latest/docs/T_GDXMRW.html (Accessed on May 15, 2022)
- 24 F. Ruether, G. Sadowski, J. Pharm. Sci. 2009, 98 (11), 4205–4215. DOI: https://doi.org/10.1002/JPS.21725
- 25 J. G. Gmehling, T. F. Anderson, J. M. Prausnitz, Ind. Eng. Chem. Fundam. 1978, 17 (4), 269–273. DOI: https://doi.org/10.1021/i160068a008
- 26 T. Spyriouni, X. Krokidis, I. G. Economou, Fluid Phase Equilib. 2011, 302 (1–2), 331–337. DOI: https://doi.org/10.1016/J.FLUID.2010.08.029
- 27 B. Bouillot, T. Spyriouni, S. Teychené, B. Biscans, Eur. Phys. J. Spec. Top. 2017, 226 (5), 913–929. DOI: https://doi.org/10.1140/epjst/e2016-60225-5
- 28 M. Klajmon, J. Chem. Eng. Data 2020, 65 (12), 5753–5767. DOI: https://doi.org/10.1021/acs.jced.0c00707
- 29www.gams.com/latest/docs/S_CONOPT.html (Accessed on May 15, 2022)
- 30 A. Drud, Math. Program. 1985, 31 (2), 153–191. DOI: https://doi.org/10.1007/BF02591747
- 31 R. Privat, R. Gani, J.-N. Jaubert, Fluid Phase Equilib. 2010, 295 (1), 76–92. DOI: https://doi.org/10.1016/J.FLUID.2010.03.041
- 32 R. Privat, E. Conte, J.-N. Jaubert, R. Gani, Fluid Phase Equilib. 2012, 318, 61–76. DOI: https://doi.org/10.1016/J.FLUID.2012.01.013
- 33 J. Wang, D. Chen, L. Zhu, Ind. Eng. Chem. Res. 2021, 60 (48), 17640–17649. DOI: https://doi.org/10.1021/acs.iecr.1c03624
- 34 J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183–184, 183–208. DOI: https://doi.org/10.1016/S0378-3812(01)00431-9
- 35
H. Zhang, A. Bonilla-Petriciolet, G. P. Rangaiah, Open Thermodyn. J.
2011, 5 (1), 71–92. DOI: https://doi.org/10.2174/1874396X01105010071
10.2174/1874396X01105010071 Google Scholar
- 36www.mathworks.com/matlabcentral/fileexchange/7895-vert2con-vertices-to-constraints (Accessed on May 15, 2022)
- 37 G. L. Perlovich, A. Bauer-Brandl, Pharm. Res. 2003, 20, 471–478. DOI: https://doi.org/10.1023/A:1022624725495
- 38 M. R. Islam, C.-C. Chen, Ind. Eng. Chem. Res. 2015, 54 (16), 4441–4454. DOI: https://doi.org/10.1021/ie503829b
- 39 G. D. Maia, M. Giulietti, J. Chem. Eng. Data 2007, 53 (1), 256–258. DOI: https://doi.org/10.1021/JE7005693
- 40 R. K. Henderson, C. Jiménez-González, D. J. C. Constable, S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P. Binks, A. D. Curzons, Green Chem. 2011, 13 (4), 854. DOI: https://doi.org/10.1039/c0gc00918k