Development of a Single-Use Device and an Associated Optical Measurement Method for Automated Magnetic Bioseparation
Corresponding Author
Lars Wommer
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Correspondence: Lars Wommer ([email protected]), Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany.Search for more papers by this authorIsabelle Barth
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Search for more papers by this authorProf. Dr. rer. nat. Roland Ulber
Technical University Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb Daimler-Straße 49, 67663 Kaiserslautern, Germany
Search for more papers by this authorProf. Dr.-Ing. Percy Kampeis
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Search for more papers by this authorCorresponding Author
Lars Wommer
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Correspondence: Lars Wommer ([email protected]), Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany.Search for more papers by this authorIsabelle Barth
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Search for more papers by this authorProf. Dr. rer. nat. Roland Ulber
Technical University Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb Daimler-Straße 49, 67663 Kaiserslautern, Germany
Search for more papers by this authorProf. Dr.-Ing. Percy Kampeis
Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Biotechnical Process Design, Campusallee, 55768 Hoppstädten-Weiersbach, Germany
Search for more papers by this authorAbstract
In bioseparation, magnetic particles can be used for the adsorption of biomolecules. They can be selectively separated from multi-component suspensions with high-gradient magnetic separation (HGMS). A single-use HGMS separation chamber has been developed to avoid cross-contamination. As with fixed-bed adsorption, breakthrough occurs after a certain time. Subsequently, the magnetic particles that are then still further fed, are lost together with the biomolecules bound to them. In order to stop the HGMS process before breakthrough, an associated optical measurement method was developed.
References
- 1 F. Schnell, M. Kube, S. Berensmeier, S. P. Schwaminger, ChemNanoMat 2019, 5 (4), 422–426. DOI: https://doi.org/10.1002/cnma.201800658
- 2 S. A. Ansari, Q. Husain, Biotechnol. Adv. 2012, 30 (3), 512–523. DOI: https://doi.org/10.1016/j.biotechadv.2011.09.005
- 3 Yusdy, S. R. Patel, M. G. S. Yap, D. I. C. Wang, Biochem. Eng. J. 2009, 48 (1), 13–21. DOI: https://doi.org/10.1016/j.bej.2009.07.017
- 4 Y. S. Shaikh, C. Seibert, P. Kampeis, World J. Condens. Matter Phys. 2016, 6, 137–151. DOI: https://doi.org/10.4236/wjcmp.2016.62017
- 5 N. Schultz, C. Syldatk, M. Franzreb, T. J. Hobley, J. Biotechnol. 2007, 132 (2), 202–208. DOI: https://doi.org/10.1016/j.jbiotec.2007.05.029
- 6 C. Hoffmann, M. Franzreb, W. H. Höll, IEEE Trans. Appl. Supercond. 2002, 12 (1), 963–966. DOI: https://doi.org/10.1109/TASC.2002.1018560
- 7 A. Pasteur, N. Tippkötter, P. Kampeis, R. Ulber, IEEE Trans. Magn. 2014, 50 (10), 5000607. DOI: https://doi.org/10.1109/TMAG.2014.2325535
- 8 J. Hubbuch, O. R. T. Thomas, Biotechnol. Bioeng. 2002, 79 (3), 301–313. DOI: https://doi.org/10.1002/bit.10285
- 9 M. Franzreb, M. Siemann-Herzberg, T. J. Hobley, O. R. T. Thomas, Appl. Microbiol. Biotechnol. 2006, 70 (5), 505–516. DOI: https://doi.org/10.1007/s00253-006-0344-3
- 10 K. Holschuh, A. Schwämmle, J. Magn. Magn. Mater. 2005, 293, 345–348. DOI: https://doi.org/10.1016/j.jmmm.2005.02.050
- 11 L. Wommer, W. Soerjawinata, R. Ulber, P. Kampeis, Eng. Life Sci. 2021, 21, 558–572. DOI: https://doi.org/10.1002/elsc.202000112
- 12 L. Wommer, P. Meiers, I. Kockler, R. Ulber, P. Kampeis, Eng. Life Sci. 2021, 21, 573–588. DOI: https://doi.org/10.1002/elsc.202000120
- 13 P. Kampeis, M. Lieblang, H.-J. Krause, Chem. Ing. Tech. 2011, 83, 851–857. DOI: https://doi.org/10.1002/cite.201000191
- 14 Y. S. Shaikh, Konzeptionelle Verfahrensentwürfe für die industrielle Anwendung von Enzym-Magnetpartikeln, Ph.D. Thesis, Technical University Kaiserslautern 2016.
- 15 C. Schumann, S. Rogin, H. Schneider, N. Tippkötter, J. Oster, P. Kampeis, Chem. Ing. Tech. 2015, 87, 137–149. DOI: https://doi.org/10.1002/cite.201300158
- 16 V. Nežerka, M. Somr, J. Trejbal, Exp. Tech. 2018, 42, 271–278. DOI: https://doi.org/10.1007/s40799-017-0231-0
- 17 M. Lerchen, J. Hornung, Y. Zou, T. Hausotte, J. Sens. Sens. Syst. 2021, 10, 219–232. DOI: https://doi.org/10.5194/jsss-10-219-2021
- 18 A. Straub, S. Laubach, G. Ehret, M. Stavridis, F. Schmähling, C. Elster, Proc. of the DGaO, 2017, 1–2.
- 19 F. J. Friedlaender, M. Takayasu, IEEE Trans. Magn. 1982, 18 (3), 817–821. DOI: https://doi.org/10.1109/TMAG.1982.1061928
- 20 F. J. Friedlaender, M. Takayasu, Trans. South Afr. Inst. Electr. Eng. 1979, 70, 154–158.
- 21 J. Svoboda, F. J. Friedlaender, H. Fu, S. W. Luan, IEEE Trans. Magn. 1988, 24 (6), 2419–2421. DOI: https://doi.org/10.1109/20.92128
- 22 J. H. P. Watson, Z. Li, Miner. Eng. 1991, 4, 815–823. DOI: https://doi.org/10.1016/0892-6875(91)90067-6
- 23 N. Hirota, T. Ando, T. Takano, H. Okada, J. Magn. Magn. Mater. 2017, 427, 296–299. DOI: https://doi.org/10.1016/j.jmmm.2016.11.028
- 24 P. A. Augusto, T. Castelo-Grande, A. M. Estévez, D. Barbosa, P. M. Costa, J. Magn. Magn. Mater. 2017, 426, 405–414. DOI: https://doi.org/10.1016/j.jmmm.2016.10.154
- 25 Z. Li, J. H. P. Watson, Miner. Eng. 1994, 7, 759–768. DOI: https://doi.org/10.1016/0892-6875(94)90105-8
- 26 Z. Li, J. H. P. Watson, Miner. Eng. 1995, 8, 401–407. DOI: https://doi.org/10.1016/0892-6875(95)00005-B
- 27 P. Kampeis, D. Feind, M. Lieblang, Patent , 2013. EP 2925453
- 28 T. R. Sarkar, J. Irudayaraj, Anal. Biochem. 2008, 130–132. DOI: https://doi.org/10.1016/j.ab.2008.04.016
- 29 M. Ebeler, F. Pilgram, K. Wolz, G. Grim, M. Franzreb, Biotechnol. J. 2018, 13 (2), 1700448, 1–6. DOI: https://doi.org/10.1002/biot.201700448
- 30 C. Barasel et al., Heliyon 2019, 5 (8), 1–7. DOI: https://doi.org/10.1016/j.heliyon.2019.e02325
- 31 S. P. Schwaminger, P. Fraga-García, M. Eigenfeld, S. Berensmeier, Front. Bioeng. Biotechnol. 2019, 7, 1–12. DOI: https://doi.org/10.3389/fbioe.2019.00233
- 32 G. Fonnum, C. Johansson, A. Molteberg, S. Mørup, E. Aksnes, J. Magn. Magn. Mater. 2005, 293, 41–47. DOI: https://doi.org/10.1016/j.jmmm.2005.01.041
- 33 Y. Li, C. Zhao, X. Wu, D. Lu, Chem. Eng. Technol. 2007, 30 (8), 1045–1049. DOI: https://doi.org/10.1002/ceat.200600346
- 34www.uniontech3d.com/news/detail/2959 (Accessed on May 23, 2022)
- 35 Y. S. Shaikh, C. Seibert, C. Schumann, M. Ferner, H. Raddatz, P. Kampeis, Eng. Life Sci. 2016, 16, 465–473. DOI: https://doi.org/10.1002/elsc.201500115