Reactive Extraction and Critical Raw Materials: Industrial Recovery of Tungsten
Stefan Willersinn
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.Search for more papers by this authorStefan Willersinn
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.
University of Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany.Search for more papers by this authorAbstract
The recovery of various metals from primary and secondary resources becomes increasingly important, especially for low concentrated resources, where the hydrometallurgical recovery route is economically preferable over the pyrometallurgical. Solvent extraction is a crucial process step in concentrating and purifying metal ions from dilute or multi-component feed streams. For an industrial design of extraction processes and equipment several basic data are necessary. The methodology of apparatus design, the scale-up challenge, and the toolbox of available methods are discussed exemplarily for the solvent extraction of tungsten.
References
- 1 A. Ghosh, H. S. Ray, Principles of Extractive Metallurgy, 2nd ed., New Age, New Delhi 1991.
- 2 W. H. Dresher, How Hydrometallurgy and the SX/EW Process Made Copper the "Green" Metal, 2001. www.copper.org/publications/newsletters/innovations/2001/08/hydrometallurgy.html (accessed in June 2016).
- 3 Horizon 2020 Work Programme 2014 – 2015, Ch. 12, European Commission, 2015. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-climate_en.pdf (accessed in June 2016).
- 4 Report on critical raw materials for the EU, European Commission, 2014. http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm (accessed in June 2016).
- 5 M. Reuter et al., Metal Recycling: Opportunities, Limits, Infrastructure, UNEP, Paris 2013.
- 6 C. Hagelüken, C. W. Corti, Gold Bull. 2010, 43 (3), 209 – 220.
- 7 F. Habashi, Textbook of Hydrometallurgy, 2nd ed., Metallurgie Extractive, Quebec 1999.
- 8
H.-J. Bart, Reactive Extraction, Springer, Heidelberg 2001.
10.1007/978-3-662-04403-2 Google Scholar
- 9
M. Aguilar Sanjuán, J. L. Cortina, Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, CRC Press, Boca Raton, FL 2008.
10.1201/9781420014112 Google Scholar
- 10 D. S. Flett, J. Organomet. Chem. 2005, 690 (10), 2426 – 2438.
- 11 D. Flett, J. Hartlage, D. Spink, D. Okuhara, J. Inorg. Nucl. Chem. 1975, 37 (9), 1967 – 1971.
- 12 D. Flett, D. Spink, Hydrometallurgy 1976, 1 (3), 207 – 240.
- 13 W. Hopkins, 16th Int. Copper Conf., Algarve, Portugal, February 2003.
- 14 B. Kennedy, W. G. Davenport, J. Jenkins, T. Robinson, in Copper Leaching, Solvent Extraction, and Electrowinning Technology (Ed: G. V. Jergensen), Society for Mining, Metallurgy, and Exploration, Littleton, CO 1999.
- 15 M. F. Vancas, in Proc. of the Int. Solvent Extraction. Conf., CNKI, Beijing 2005.
- 16
Solvent Extraction Principles and Practice (Eds: J. Rydberg), Dekker, New York 2004.
10.1201/9780203021460 Google Scholar
- 17 T. C. Lo, M. H. I. Baird, C. Hanson, Handbook of solvent extraction, Krieger, Malabar, FL 1991.
- 18 J. C. Godfrey, M. J. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York 1994.
- 19 M. Attarakih, S. Al-Zyod, M. Abu-Khader, H. J. Bart, Procedia Eng. 2012, 42, 1445 – 1462.
- 20 H.-J. Bart, Chem. Ing. Tech. 2002, 74 (3), 229 – 241.
- 21
R. Goedecke, Fluidverfahrenstechnik: Grundlagen, Methodik, Technik, Praxis, Vol. 2, Wiley-VCH, Weinheim 2006.
10.1002/9783527623631 Google Scholar
- 22 M. Cox, in Solvent Extraction Principles and Practice (Eds: J. Rydberg), Dekker, New York 2004.
- 23 G. M. Ritcey, A. W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy, Elsevier, Amsterdam 1979.
- 24 V. S. Kislik, Solvent Extraction: Classical and Novel Approaches, Elsevier, Amsterdam 2012.
- 25 K. C. Sole, P. M. Cole, in Ion Exchange and Solvent Extraction (Eds: Y. Marcus), Dekker, New York 2001.
- 26 R. G. Bautista, in The Paul E. Queneau International Symposium-Extractive Metallurgy of Copper, Nickel & Cobalt: Fundamental Aspects.: Extractive Metallurgy of Copper, Nickel and Cobalt (Eds: R. G. Reddy), The Minerals, Metals & Material Society, Warrendale, PA 1993.
- 27 R. Marr, H.-J. Bart, Chem. Ing. Tech. 1982, 54 (2), 119 – 129.
- 28 G. R. Choppin, J.-O. Liljenzin, J. Rydberg, Radiochemistry and Nuclear Chemistry, 3rd ed., Butterworth-Heinemann, Stoneham, MA 2002.
- 29 H. J. Bart, G. W. Stevens, in Ion Exchange and Solvent Extraction: A Series of Advances (Eds: Y. Marcus), CRC Press, Boca Raton, FL 2004.
- 30 R. A. Carter, Eng. Min. J. 1997, 198 (9), 26 – 30.
- 31 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., Pergamon, Oxford 1974.
- 32 J. D. Thornton, Science and Practice of Liquid-Liquid Extraction: Phase Equilibria; Mass Transfer and Interfacial Phenomena; Extractor Hydrodynamics, Vol. 1, Oxford University Press, Oxford 1991.
- 33 G. W. Stevens, J. M. Perera, Miner. Process. Extr. Metall. Rev. 1997, 17 (1 – 4), 205 – 226.
- 34 H. Watarai, L. Cunningham, H. Freiser, Anal. Chem. 1982, 54 (13), 2390 – 2392.
- 35 J. Lewis, Chem. Eng. Sci. 1954, 3 (6), 248 – 259.
- 36 W. Nitsch, B. Kruis, J. Inorg. Nucl. Chem. 1978, 40, 857 – 864.
- 37 D. Dreisinger, W. Cooper, Solvent Extr. Ion Exch. 1989, 7 (2), 335 – 360.
- 38 H.-J. Bart, H.-P. Rousselle, Hydrometallurgy 1999, 51, 285 – 298.
- 39 P. Danesi, in Solvent Extraction Principles and Practice (Eds: J. Rydberg), Dekker, New York 2004.
- 40 S. Willersinn, H.-J. Bart, Chem. Eng. Process. 2015, 95, 186 – 194.
- 41 S. Willersinn, H. Bart, Int. J. Chem. Kinet. 2016, 48 (10), 609 – 621.
- 42 A. Gabelman, S. T. Hwang, J. Membr. Sci. 1999, 159, 61 – 106.
- 43 L. Steiner, Chem. Eng. Sci. 1986, 41 (8), 1979 – 1986.
- 44 M. J. Slater, Can. J. Chem. Eng. 1995, 73 (4), 462 – 469.
- 45 M. Henschke, A. Pfennig, AIChE J. 1999, 45 (10), 2079 – 2086.
- 46 J. Schröter, W. Bäcker, M. J. Hampe, Chem. Ing. Tech. 1998, 70 (3), 279 – 283.
- 47 H. M. Hulburt, S. Katz, Chem. Eng. Sci. 1964, 19 (8), 555 – 574.
- 48 Y. Liao, D. Lucas, Chem. Eng. Sci. 2009, 64 (15), 3389 – 3406.
- 49 Y. Liao, D. Lucas, Chem. Eng. Sci. 2010, 65 (10), 2851 – 2864.
- 50 M. W. Hlawitschka, M. M. Attarakih, S. S. Alzyod, H.-J. Bart, Chin. J. Chem. Eng. 2016, 24 (2), 259 – 263.
- 51 O. Lerner, R. Kleinberger, Y. Ilan, Copper VI: Hydrometallurgy of Copper (Eds: P. A. Riveros), Canadian Institute of Mining, Metallurgy and Petroleum, Montreal 2003, 735 – 751.
- 52 A. Wojik, R. Marr, Chem. Ing. Tech. 2005, 77 (6), 653 – 668.
- 53 Anorganische Rohstoffe – Sicherung der Rohstoffbasis von morgen, ProcessNet, Frankfurt am Main, 2015. http://processnet.org/dechema_media/PP_Anorg_Rohstoffe_2015_11_FINAL_ezl-p-20001405.pdf (accessed in June 2016).
- 54 C. Reichl, M. Schatz, G. Zsak, World-Mining-Data, Austrian Federal Ministry of Science, Research, and Economy, Vienna 2016.
- 55
E. Lassner, W.-D. Schubert, E. Lüderitz, H. U. Wolf, Tungsten, Tungsten Alloys, and Tungsten Compounds, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2000. DOI: 10.1002/14356007.a27_229
10.1002/14356007.a27_229 Google Scholar
- 56 T. J. Brown et al., European Mineral Statistics 2007 – 11, British Geological Survey, Keyworth, United Kingdom 2013.
- 57 K. Winnacker, L. Küchler, Chemische Technik: Prozesse und Produkte, 5th ed., Wiley-VCH, Weinheim 2004.
- 58 E. Lassner, Int. J. Refract. Met. Hard Mater. 1995, 13 (1 – 3), 35 – 44.
- 59 R. P. S. Gaur, JOM 2006, 58 (9), 45 – 49.
- 60
G. Carvalho, M. Sampaio, Hydrometallurgy 1991, 26, 137 – 150.
10.1016/0304-386X(91)90027-J Google Scholar
- 61 M. A. Morís, F. V. Díez, J. Coca, Sep. Purif. Technol. 1999, 17 (3), 173 – 179.
- 62 J. F. Paulino et al., Hydrometallurgy 2012, 127 – 128, 121 – 124.
- 63 G. Zhang, W. Guan, L. Xiao, Q. Zhang, Hydrometallurgy 2016, 165, 233 – 237.
- 64 N. Gerhardt, A. Palant, V. Petrova, R. Tagirov, Hydrometallurgy 2001, 60 (1), 1 – 5.
- 65 T. Sato, K. Sato, Hydrometallurgy 1995, 37 (3), 253 – 266.
- 66 J. Coca, F. V. Díez, M. A. Morís, Hydrometallurgy 1990, 25 (2), 125 – 135.
- 67 G. Huo, C. Peng, C. Liao, in Rare Metal Technology 2014: Proc. of ,;a Symposium Sponsored by the Minerals, Metals & Materials Society (TMS) (Eds: N. Neelameggham et al.), Wiley, Hoboken 2014.
- 68 K. Gloe, M. Wenzel, L. F. Lindoy, F. Li, in Ion Exchange and Solvent Extraction: Supramolecular aspects of solvent extraction, Vol. 21 (Ed: B. A. Moyer), CRC Press, Boca Raton, FL 2013.