Functionalized Magnetizable Particles for Downstream Processing in Single-Use Systems
Dr. Nils Tippkötter
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorHuschyar Al-Kaidy
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorSteffen Wollny
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Roland Ulber
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, GermanySearch for more papers by this authorDr. Nils Tippkötter
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorHuschyar Al-Kaidy
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorSteffen Wollny
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Roland Ulber
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, Germany
University of Kaiserslautern, Institute of Bioprocess Engineering, Gottlieb-Daimler-Straße 44, 67663 Kaiserslautern, GermanySearch for more papers by this authorAbstract
Biotechnological downstream processing is usually an elaborate procedure, requiring a multitude of unit operations to isolate the target component. Besides the disadvantageous space-time yield, the risks of cross-contaminations and product loss grow fast with the complexity of the isolation procedure. A significant reduction of unit operations can be achieved by application of magnetic particles, especially if these are functionalized with affinity ligands. As magnetic susceptible materials are highly uncommon in biotechnological processes, target binding and selective separation of such particles from fermentation or reactions broths can be done in a single step. Since the magnetizable particles can be produced from iron salts and low priced polymers, a single-use implementation of these systems is highly conceivable. In this article, the principles of magnetizable particles, their synthesis and functionalization are explained. Furthermore, applications in the area of reaction engineering, microfluidics and downstream processing are discussed focusing on established single-use technologies and development potential.
References
- 1 M. Chen, S. Yamamuro, D. Farrell, S. Majetisch, J. Appl. Phys. 2003, 93, 7551.
- 2 A. Gupta, M. Gupta, Biomaterials. 2005, 26 (18), 3995.
- 3 A. Lu, E. Lorena Salabas, F. Schüth, Angew. Chem. 2007, 119, 1242.
- 4 A. Heebøll-Nielsen, M. Dalkiæ, J. J. Hubbuch, O. T. R Thomas, Biotechnol. Bioeng. 2004, 87, 311.
- 5 I. L. Batalha, A. Hussain, A. C. A. Roque, J. Mol. Recognit. 2010, 23, 462.
- 6 A. C. A. Roque, C. R. Lowe, Biotechnol. Adv. 2006, 24, 17.
- 7 A. F. Ngomsika et al., Water Res. 2006, 40, 1848.
- 8 A. F. Ngomsik et al., J. Hazard. Mater. 2009, 166, 1043.
- 9 V. Rocher, A. Bee, J. M. Siauguea, V. Cabuil, J. Hazard. Mater. 2010, 178, 434.
- 10 J. Lin et al., Food Chem. 2009, 117, 94.
- 11 S. Teotia, M. N. Gupta, Mol. Biotechnol. 2002, 20, 231.
- 12 S. Teotia, M. N. Gupta, Appl. Biochem. Biotech. 2002, 90, 211 – 220.
- 13 D. Zhang et al., J. Hazard. Mater. 2011, 192, 1088 – 1093.
- 14 Y. B. Luoa, Z. G. Shi, Q. Gao, Y. Q. Feng, J. Chromatogr., A 2011, 1218, 1353.
- 15 L. Chen et al., J. Agric. Food Chem. 2009, 57, 10073.
- 16 L. Chen et al., J. Chromatogr., A 2009, 1216, 3710.
- 17 N. Z. Danckwardt, M. Franzreb, A. E. Guber, V. Saile, J. Magn. Magn. Mater. 2011, 323 (22), 2776.
- 18 G. McHale, M. I. Newton, Lab Chip 2011, 7, 5473 – 5481. DOI: 10.1039/c1sm05066d
- 19 J. West et al., H. Berney, Lab Chip 2002, 2, 224 – 230. DOI: 10.1039/b206756k
- 20 Y. Sun, Y. C. Kwok, N. T. Nguyen, Lab Chip 2007, 7, 1012 – 1017. DOI: 10.1039/b700575
- 21 Y. Sun, N.-T. Nguyen, Y. C. Kwok, Anal. Chem. 2008, 80, 6127 – 6130. DOI: 10.1021/ac800787g
- 22 M. U. Kopp, A. J. Mello, A. Manz, Science 1998, 280, 1046 – 1048. DOI: 0.1126/science.280.5366.1046
- 23 P. Aussillous, D. Quéré, Nature 2001, 411, 924 – 927. DOI: 10.1038/35082026
- 24 K. Rykaczewski et al., ACS Nano 2011, 5 (12), 9746 – 9754. DOI: 10.1021/nn203268e
- 25 Y. Zhao et al., Adv. Mater. 2010, 22, 707 – 710. DOI: 10.1002/adma.200902512
- 26 Y. Xue et al., Adv. Mater. 2010, 22, 4814 – 4818. DOI: 10.1002/adma.201001898
- 27 Z. Long, A. M. Shetty, M. J. Solomon, R. G. Larson, Lab Chip 2009, 9, 1567 – 1575. DOI: 10.1039/b819818g
- 28 B. Padmavathy, A. Patel, R. V. Kumar, B. M. J. Ali, Sci. Adv. Mater. 2012, 4 (1), 114 – 120. DOI: 10.1166/sam.2012.1259
- 29 J. Pipper et al., Nat. Med. 2007, 13 (10), 1259 – 1263. DOI: 10.1038/nm1634
- 30 J. Pipper, Y. Zhang, P. Neuzil, T.-M. Hsieh, Angew. Chem., Int. Ed. 2008, 47 (21), 3900 – 3904. DOI: 10.1002/anie.200705016
- 31 E. Bormashenko, A. Musin, Appl. Surf. Sci. 2009, 255, 6429 – 6431. DOI: 10.1016/j.apsusc.2009.02.027
- 32 S. Fujii et al., Soft Matter 2010, 6, 635 – 640. DOI: 10.1039/b914997j
- 33 D. Dupin, S. P. Armes, S. Fujii, Acc. Chem. Res. 2009, 131, 5386 – 5387. DOI: 10.1021/ja901641v
- 34 J. Tian, T. Arbatan, X. Li, W. Shen, Chem. Commun. 2010, 46, 4734 – 4736. DOI: 10.1039/c001317j
- 35 H. Zeng, Y. Zhao, Appl. Phys. Lett. 2010, 96, 114104. DOI: 10.1063/1.3367704
- 36 M. Shikida et al., J. Micromech. Microeng. 2006, 16, 1875 – 1883. DOI: 10.1088/0960-1317/16/9/017
- 37 M. Shikida et al., J. Micromech. Microeng. 2008, 18, 035034. DOI: 10.1088/0960-1317/18/3/035034
- 38 U. Lehmann, C. Vandevyver, V. K. Parashar, M. A. M. Gijs, Angew. Chem., Int. Ed. 2006, 45 (19), 3062 – 3067. DOI: 10.1002/anie.200503624
- 39 T. Ohashi, H. Kuyama, N. Hanafusa, Biomed. Microdevices 2007, 9, 695 – 702. DOI: 10.1007/s10544-007-9078-y
- 40 J. M. Mabry, A. Vij, S. T. Iacono, B. D. Viers, Angew. Chem., Int. Ed. 2008, 47, 4137 – 4140. DOI: 10.1002/anie.200705355
- 41 D. H. Campbell, E. Lüscher, L. S. Lerman, Proc. Natl. Acad. Sci. USA 1951, 37, 575 – 578.
- 42 P. Cuatrecasas, J. Biol. Chem. 1970, 245, 3059 – 3065.
- 43 J. J. Langone, J. Immunol. Methods 1982, 55, 277 – 296.
- 44 Thermo Scientific Pierce Protein Purification Technical Handbook, Thermo Fisher Scientific, Waltham, MA 2010.
- 45
I. Safarik,
M. Safarikova,
Biomagn. Res. Technol.
2004,
2,
Article 7.
DOI: 10.1186/1477-044X-2-7
10.1186/1477‐044X‐2‐7 Google Scholar
- 46 www.sartorius.de/de/anwendungen/labor/chromatographie/.
- 47 D. Eibl et al., Single-Use-Technologie in der biopharmazeutischen Produktion, Dechema Work Group Single-Use Technologies, Dechema, Frankfurt 2012.
- 48 M. Kuczewski, E. Schirmer, B. Lain, G. Zarbis-Papastoitsis, Biotechnol. J. 2011, 6, 56 – 65.
- 49 G. Hussack et al., J. Agric. Food Chem. 2010, 58, 3451 – 3459.
- 50 A. Neisser-Svae et al., Vox Sang. 2009, 97, 226 – 233.
- 51 W. Schütt et al., Hybridoma 1997, 16, 109 – 117.
- 52 R. Stoltenburg, C. Reinemann, B. Strehlitz, Anal. Bioanal. Chem. 2005, 383 (1), 83 – 91.
- 53 S. D. Jayasena, Clin. Chem. 1999, 45 (9), 1628 – 1650.
- 54 K.-M. Song et al., Sensors 2012, 12, 612 – 631.
- 55 S. Cho et al., Electrophoresis 2004, 25, 21 – 22.
- 56 T. S. Romig, C. Bell, D. W. Drolet, J. Chromatogr., B 1999, 731, 275 – 284.
- 57 A. C. Connor, L. B. McGown, J. Chromatogr. 2006, 1111, 115 – 119.
- 58 M. B. Murphy et al., Nucleic Acids Res. 2003, 31, 110.
- 59 Ö. Kökpinar et al., Biotechnol. Bioeng. 2011, 108, 2371 – 2379.
- 60 A. Erdem, H. Karadeniz, G. Mayer, M. Famulok, Electroanalysis 2011, 21 (11), 1278 – 1284.
- 61 C. Hoffmann, M. Franzreb, W. H. Holl, IEEE Trans. Appl. Supercond. 2001, 12 (1), 963 – 966.
- 62 P. Kampeis, M. Bewer, S. Rogin, Chem. Ing. Tech. 2009, 81 (3), 275 – 281.
- 63 A. Ozyhar, M. Gries, H. H. Kiltz, O. Pongs, J. Steroid Biochem. Mol. Biol. 1992, 43, 629 – 634.
- 64 M. Blank, T. Weinschenk, M. Priemer, H. Schluesener, J. Biol. Chem. 2001, 276, 16464 – 16468.
- 65 D. Honys, Plant Sci. 2001, 161, 605 – 611.
- 66 D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, L. Gold, Proc. Natl. Acad. Sci. USA 2003, 100, 15416 – 15421.
- 67 T. S. Romig, C. Bell, D. W. Drolet, J. Chromatogr., B 1999, 731, 275 – 284.
- 68 W. J. Chung et al., Electrophoresis 2005, 26, 694 – 702.