Unusual Temperature-Induced Retention Behavior of Constrained β-Amino Acid Enantiomers on the Zwitterionic Chiral Stationary Phases ZWIX(+) and ZWIX(–)
István Ilisz
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZoltán Pataj
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZsanett Gecse
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZsolt Szakonyi
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorFerenc Fülöp
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorWolfgang Lindner
Department of Analytical Chemistry, University of Vienna, Vienna, Austria
Search for more papers by this authorAntal Péter
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorIstván Ilisz
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZoltán Pataj
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZsanett Gecse
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorZsolt Szakonyi
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorFerenc Fülöp
Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorWolfgang Lindner
Department of Analytical Chemistry, University of Vienna, Vienna, Austria
Search for more papers by this authorAntal Péter
Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
Search for more papers by this authorABSTRACT
The effects of temperature on the chiral recognition of cyclic β-amino acid enantiomers on zwitterionic [Chiralpak ZWIX(+) and ZWIX(–)] chiral stationary phases were investigated. Experiments were performed at different mobile phase compositions and under 10°C column temperature increments in the temperature range 10–50°C. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k and ln α versus 1/T, respectively. Unusual temperature behavior was observed, especially on the ZWIX(–) column, where the application of MeOH/MeCN (50/50 v/v) containing 25 mM triethylamine and 50 mM formic acid as mobile phase led to nonlinear van't Hoff plots and increasing retention time with increasing temperature. On both columns, both enthalpically and entropically driven separations were observed. Chirality 26:385–393, 2014. © 2014 Wiley Periodicals, Inc.
LITERATURE CITED
- 1 Horne WS, Price JL, Keck JL, Gellman SH. Helix bundle quaternary structure from α/β-peptide foldamers. J Am Chem Soc 2007; 129: 4178–4180.
- 2 Martinek TA, Hetényi A, Fülöp L, Mándity IM, Tóth GK, Dékány I, Fülöp F. Secondary structure dependent self-assembly of beta-peptides into nanosized fibrils and membranes. Angew Chem Int Edit 2006; 45: 2396–2400.
- 3 Kuhl A, Hahn MG, Dumic M, Mittendorf J. Alicyclic beta-amino acids in medicinal chemistry. Amino Acids 2005; 29: 89–100.
- 4 Juaristi E, Soloshonok VA. Enantioselective synthesis of β-amino acids. New York: Wiley-Interscience; 2005. p 600.
- 5 Kiss L, Fülöp F. Synthesis of carbocyclic and heterocyclic β-aminocarboxylic acids. Chem Rev 2014; 114: 1116–1169.
- 6 Martinek TA, Fülöp F. Peptidic foldamers: ramping up diversity. Chem Soc Rev 2012; 41: 687–702.
- 7 Hasenoehrl A, Galic T, Ergovic G, Marsic N, Skerlev M, Mittendorf J, Geschke U, Schmidt A, Schoenfeld W. In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the pathogenic yeast Candida albicans. Antimicrob Agents Ch 2006; 50: 3011–3018.
- 8 Szakonyi Z, Fülöp F. Monoterpene-based chiral β-amino acid derivatives prepared from natural sources: syntheses and applications. Amino Acids 2011; 41: 597–608.
- 9 Ilisz I, Berkecz R, Péter A. Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: A review. J Pharm Biomed Anal 2008; 47: 1–15.
- 10 Ilisz I, Pataj Z, Aranyi A, Péter A. High-performance liquid chromatography of biologically important, small epimeric peptides and their L, D-amino acid content. Mini-Rev Med Chem 2010; 10: 287–298.
- 11 Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic antibiotic selectors in direct HPLC enantioseparations. Sep Purif Rev 2012; 41: 207–249.
- 12 Ilisz I, Aranyi A, Pataj Z, Péter A. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. J Pharm Biomed Anal 2012; 69: 28–41.
- 13 Ilisz I, Aranyi A, Pataj Z, Péter A. Enantiomeric separation of nonproteinogenic amino acids by high-performance liquid chromatography. J Chromatogr A 2012; 1269: 94–121.
- 14
Ilisz I,
Aranyi A,
Pataj Z,
Péter A. Enantioseparations by high-performance liquid chromatography using macrocyclic glycopeptide-based chiral stationary phases — An overview. In: G Scriba, editor. Chiral separations, methods and protocols. New York: Humana Press; 2013. p 137–163.
10.1007/978-1-62703-263-6_8 Google Scholar
- 15 Berthod A. Chiral recognition mechanisms in enantiomers separations: A general view. In: A Berthod, editor. Chiral recognition in separation methods mechanisms and applications. Heidelberg: Springer; 2010. p 1–32.
- 16 Hyun MH. Development and application of crown ether-based HPLC chiral stationary phases. Bull Kor Chem Soc 2005; 26: 1153–1163.
- 17 Lämmerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 2010; 1217: 814–856.
- 18 Sipos L, Ilisz I, Pataj Z, Szakonyi Zs, Fülöp F, Armstrong DW, Péter A. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 2010; 1217: 6956–6963.
- 19 Fornstedt T, Sajonz P, Guiochon G. A closer study of chiral retention mechanisms. Chirality 1998; 10: 375–381.
- 20 Gotmar G, Fornstedt T, Guiochon G. Apparent and true enantioselectivity in enantioseparations. Chirality 2000; 12: 558–564.
- 21 Gotmar G, Fornstedt T, Guiochon G. Retention mechanism of β-blockers on an immobilized cellulase. relative importance of the hydrophobic and ionic contributions to their enantioselective and nonselective interactions. Anal Chem 2000; 72: 3908–3915.
- 22 Péter A, Török G, Armstrong DW, Tóth G, Tourwé D. Effect of temperature on retention of enantiomers of β-methyl amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 1998; 828: 177–190.
- 23 Péter A, Vékes E, Armstrong DW. Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase. J Chromatogr A 2002; 958: 89–107.
- 24 Morin N, Guillaume YC, Peyrin E, Rouland JC. Retention mechanism study of imidazole derivatives on a β-cyclodextrin-bonded stationary phase. Thermal analysis contributions. Anal Chem 1998; 70: 2819–2826.
- 25 Cavazzini G, Nadalini G, Dondi F, Gasparrini F, Ciogli A, Villani C. Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase. J Chromatogr A 2004; 1031: 143–158.
- 26 Heinish S, Puy G, Barrioulet MP, Rocca JL. Effect of temperature on the retention of ionizable compounds in reversed-phase liquid chromatography: Application to method development. J Chromatogr A 2006; 1118: 234–243.
- 27 Dorsey JG, Dill KA. The molecular mechanism of retention in reversed-phase liquid chromatography. Chem Rev 1989; 89: 331–346.
- 28 Pappa-Louisi A, Nikitas P, Papachristos K, Zisi C. Modeling the combined effect of temperature and organic modifier content on reversed-phase chromatographic retention: Effectiveness of derived models in isocratic and isothermal mode retention prediction. J Chromatogr A 2008; 1201: 27–34.
- 29 Galaon T, David V. Deviation from van't Hoff dependence in RP-LC induced by tautomeric interconversion observed for four compounds. J Sep Sci 2011; 34: 1423–1428.
- 30 Greibrokk T, Andersen T. High-temperature liquid chromatography. J Chromatogr A 2003; 1000: 743–755.
- 31 Oberleitner WR, Maier NM, Lindner W. Enantioseparation of various amino acid derivatives on a quinine based chiral anion-exchange selector at variable temperature conditions. Influence of structural parameters of the analytes on the apparent retention and enantioseparation characteristics. J Chromatogr A 2002; 960: 97–108.
- 32 Hoffmann CV, Pell R, Lämmerhofer M, Lindner W. Effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal Chem 2008; 80: 8780–8789.
- 33 Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W. Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 2009; 1216: 1157–1166.
- 34 Wernisch S, Pell R, Lindner W. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases. J Sep Sci 2012; 35: 1560–1572.
- 35 Pell R, Sic S, Lindner W. Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 2012; 1269: 287–296.
- 36 Szakonyi Z, Fülöp F. Monoterpene-based chiral β-amino acid derivatives prepared from natural sources: syntheses and applications. Amino Acids 2011; 41: 597–608.
- 37 Szakonyi Z, Fülöp F. Mild and efficient ring opening of monoterpene-fused beta-lactam enantiomers. Synthesis of novel beta-amino acid derivatives Arkivoc 2003; 14: 225–232.
- 38 Gyónfalvi S, Szakonyi Z, Fülöp F. Synthesis and transformation of novel cyclic beta-amino acid derivatives from (+)-3-carene. Tetrahedron-Asymmetry 2003; 14: 3965–3972.
- 39 Szakonyi Z, Martinek TA, Sillanpää R, Fülöp F. Regio- and stereoselective synthesis of the enantiomers of monoterpene-based beta-amino acid derivatives. Tetrahedron-Asymmetry 2007; 18: 2442–2447.
- 40 Szakonyi Z, Martinek TA, Sillanpää R, Fülöp F. Regio- and stereoselective synthesis of constrained enantiomeric beta-amino acid derivatives. Tetrahedron-Asymmetry 2008; 19: 2296–2303.
- 41 Szakonyi Z, Balázs Á, Martinek TA, Fülöp F. Enantioselective addition of diethylzinc to aldehydes catalyzed by gamma-amino alcohols derived from (+)- and (–)-alpha-pinene. Tetrahedron-Asymmetry 2006; 17: 199–204.
- 42 Szakonyi Z, Balázs Á, Martinek TA, Fülöp F. Stereoselective synthesis of pinane-based β- And γ-amino acids via conjugate addition of lithium amides and nitromethane. Tetrahedron-Asymmetry 2010; 21: 2498–2504.
- 43 Matarashvili I, Chankvetadze L, Fanali S, Farkas T, Chankvetadze B. HPLC separation of enantiomers of chiral arylpropionic acid derivatives using polysaccharide-based chiral columns and normal-phase eluents with emphasis on elution order. J Sep Sci 2013; 36: 140–147.
- 44 Adlof R, List G. Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography: Effect of column temperature on retention times. J Chromatogr A 2004; 1046: 109–113.
- 45 Wu N, Yehl PM, Gauthier D, Dovletoglu A. Retention and thermodynamic studies of piperazine diastereomers in reversed-phase liquid chromatography. Chromatographia 2004; 59: 189–195.
- 46 Yogo K, Takemura C, Saito Y, Jinno K. An abnormal temperature dependence of alkylpyrazines’ retention in reversed-phase liquid chromatography. Anal Sci 2011; 27: 1257–1260.