HPLC–CD selectivity assay for alcohol dehydrogenases†
Melissa Hamzic
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Search for more papers by this authorCorresponding Author
Jörg Pietruszka
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Institut für Bioorganische Chemie der Heinrich-Heine Universität im Forschungszentrum Jülich, GermanySearch for more papers by this authorDiana Sandkuhl
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Search for more papers by this authorMelissa Hamzic
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Search for more papers by this authorCorresponding Author
Jörg Pietruszka
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Institut für Bioorganische Chemie der Heinrich-Heine Universität im Forschungszentrum Jülich, GermanySearch for more papers by this authorDiana Sandkuhl
Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum, Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
Search for more papers by this authorContribution to the Proceedings of the 22nd International Symposium on Chirality [ISCD 22]
Abstract
Enantioselective reductions are a key to successful target-oriented syntheses. Finding the most suitable conditions is often a tedious work that is especially hampered by the time-consuming analytical investigation. A possible solution is the combined use of high-performance liquid chromatography and circular dichroism to find a suitable system for providing enantiomerically pure alcohols. This investigation led to an efficient protocol for the alcohol dehydrogenase-catalyzed reduction of 1-phenyl-2-propyn-3-trimethylsilyl-1-on (1). Chirality, 2011. © 2011Wiley Periodicals, Inc.
LITERATURE CITED
- 1
K Drauz, H Waldmann, editors.
Enzyme catalysis in organic synthesis, 2nd ed.
Weinheim:
Wiley-VCH;
2002.
10.1002/9783527618262 Google Scholar
- 2
Liese A,Seelbach K,Wandrey C.
Industrial biotransformations.
Weinheim:
Wiley-VCH;
2006.
10.1002/3527608184 Google Scholar
- 3
Sheldon RA,Arends I,Hanefeld U.
Green chemistry and catalysis.
Weinheim:
Wiley-VCH;
2007.
10.1002/9783527611003 Google Scholar
- 4
Rothenberg G.
Catalysis: concepts and green applications.
Weinheim:
Wiley-VCH;
2008.
10.1002/9783527621866 Google Scholar
- 5 Berkessel A,Gröger H. Asymmetric organocatalysis. Weinheim: Wiley-VCH; 2005.
- 6
Dalko PI.
Enantioselective organocatalysis,
Weinheim:
Wiley-VCH;
2007.
10.1002/9783527610945 Google Scholar
- 7
Illanes A.
Enzyme biocatalysis: principles and applications. The Netherlands:
Springer;
2008.
10.1007/978-1-4020-8361-7 Google Scholar
- 8 Polaina J,MacCabe AP. Industrial enzymes: structure function and applications. The Netherlands: Springer; 2008.
- 9
Arnold FH,Georgiou G. In:
JM Walker, series editor.
Directed evolution library creation: methods and protocols. Totowa:
Humana Press,
2003.
10.1385/159259395X Google Scholar
- 10 Brakmann S,Johnsson K. Directed molecular evolution of proteins: or how to improve enzymes for biocatalysis. Weinheim: Wiley-VCH; 2002.
- 11 Brakmann S,Schwienhorst A. Evolutionary methods in biotechnology: clever tricks for directed evolution. Weinheim: Wiley-VCH; 2002.
- 12 Reetz MT. Proc Natl Acad Sci USA 2004; 101: 5716–5722.
- 13 Steele HL,Jaeger KE,Daniel R,Streit WR. J Mol Microbiol Biotechnol 2009; 16: 25–37.
- 14 Reymond JL. Enzyme assays: high-throughput screening genetic selection and fingerprinting. Weinheim: Wiley-VCH; 2006.
- 15 Reymond JL. In: S Lutz, UT Bornscheuer, editors. Protein engineering handbook. Weinheim: Wiley-VCH; 2009, p 669–711.
- 16 Reymond JL,Fluxa VS,Maillard N. Chem Commun 2009: 34–46.
- 17
Reymond JL,Wahler D.
ChemBioChem
2002;
3:
701–708.
10.1002/1439-7633(20020802)3:8<701::AID-CBIC701>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 18 Franken B,Jaeger KE,Pietruszka J. Screening for enantioselective enzymes. In: KN Timmes, editor. Handbook of microbiology of hydrocarbons, oils, lipids, and derived compounds. Berlin-Heidelberg: Springer; 2009. p 2859–2876; Ch. 34.
- 19 Franken B,Jaeger KE,Pietruszka J. Protocols for screening enantioselective lipases. In: KN Timmes, editor. Handbook of microbiology of hydrocarbons, oils, lipids, and derived compounds. Berlin-Heidelberg: Springer; 2009. p 4582–4586; Ch. 97.
- 20
Reetz MT,Kühling KM,Hinrichs H,Deege A.
Circular dichroism as a detection method in the screening of enantioselective catalysts.
Chirality
2000;
12:
479–482.
10.1002/(SICI)1520-636X(2000)12:5/6<479::AID-CHIR32>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 21
Stang PJ,Diederich F.
Modern acetylene chemistry Weinheim.
Wiley-VCH:
Wiley-VCH;
1995.
10.1002/9783527615278 Google Scholar
- 22 Helal CJH,Magriotis PA,Corey EJ. Direct catalytic enantioselective reduction of achiral α,β-ynones. Strong remote steric effects across the CC triple bond. J Am Chem Soc 1996; 118: 10938–10939.
- 23 Matsumura K,Hashiguchi S,Ikariya T,Noyori R. Asymmetric transfer hydrogenation of α,β-acetylenic ketones. J Am Chem Soc 1997; 119: 8738–8739.
- 24 Parker KA,Ledeboer MW. Asymmetric reduction. A convenient method for the reduction of alkynyl ketones. J Org Chem 1996; 61: 3214–3217.
- 25 Ramachandran PV,Teodorovic AV,Rangaishenvi MV,Brown HC. Chiral synthesis via organoboranes. 34. Selective reductions. 47. Asymmetric reduction of hindered α,β-acetylenic ketones with B-chlorodiisopinocampheylborane to propargylic alcohols of very high enantiomeric excess. Improved workup procedure for the isolation of product alcohols. J Org Chem 1992; 57: 2379–2386; reviews.
- 26 G Helmchen, RW Hoffmann, J Mulzer, E Schaumann, editors. Houben-Weyl methods of organic chemistry. Stuttgart: Thieme Verlag; 1995.
- 27
PG Andersson, IJ Munslow, editors.
Modern reduction methods.
Weinheim:
Wiley-VCH;
2008.
10.1002/9783527622115 Google Scholar
- 28 Xu D,Li Z,Ma S. Novozym-435-catalyzed enzymatic separation of racemic propargylic alcohols. A facile route to optically active terminal aryl propargylic alcohols. Tetrahedron Lett 2003; 44: 6343–6346.
- 29 Waldinger C,Schneider M. Aryl propargylic alcohols of high enantiomeric purity via lipase catalyzed resolutions. Tetrahedron: Asymmetry 1996; 7: 1485–1488.
- 30 Bradshaw CW,Hummel W,Wong C-H. Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J Org Chem 1992; 57: 1532–1536.
- 31 Phillips RS,Heiss C. Asymmetric reduction of ethynyl ketones and ethynylketoesters by secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. J Chem Soc Perkin Trans 1 2000: 2821–2825.
- 32 Schubert T,Hummel W,Kula M-R,Müller M. Enantioselective synthesis of both enantiomers of various propargylic alcohols by use of two oxidoreductases. Eur J Org Chem 2001: 4181–4187.
- 33 Müller M,Wolberg M,Schubert T,Hummel W. Enzyme-catalyzed regio- and enantioselective ketone reductions. Adv Biochem Eng Biotechnol 2005; 92: 261–287.
- 34 Bischop M,Doum V,Nordschild ACM,Pietruszka J,Sandkuhl D. Total synthesis of halicholactone and neohalicholactone. Synthesis 2010: 527–537.
- 35 Schöne N,Pietruszka J. New 1,3-disubstituted enantiomerically pure allylboronic esters by Johnson rearrangement of boron-substituted allyl alcohols. Eur J Org Chem 2004; 61: 5011–5019.
- 36 Raminelli C,da Silva NC,Dos Santos AA,Porto ALM,Andrade LH,Comasseto JV. Regio- and stereoselective synthesis of Z-vinylic tellurides from propargylic alcohols: a route to chiral Z-enynes. Tetrahedron 2005; 61: 409–415.
- 37 Ariza X,Garcia J,Georges J,Vicente M. 1-Phenylprop-2-ynyl acetate: a useful building block for the stereoselective construction of polyhydroxylated chains. Org Lett 2006; 8: 4501–4504.
- 38 Schöne N,Pietruszka J. New enantiomerically pure allylboronic esters in allyl additions: synthesis and NMR investigation of intermediates. Synthesis 2006: 24–30.
- 39 Kobayashi S,Itomi K,Morino K,Iida H,Yashima E. Polymerization of an optically active phenylacetylene derivative bearing an azide residue by click reaction and reaction with a rhodium catalyst. Chem Commun 2008: 3019–3021.
- 40 De Wildeman S,Sereinig N. Enzymatic reduction of carbonyl groups. In: GA Molander, editor. Science of synthesis—stereoselective synthesis 2. Stuttgart-New York: Thieme; 2011. p 133–208; Ch. 2.3.
- 41 Prelog V. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl Chem 1964; 9: 119–130.
- 42 Schlieben NH,Niefind K,Müller J,Riebel B,Hummel W,Schomburg D. Atomic resolution of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 2005; 349: 801–813.
- 43 De Wildeman SMA,Sonke T,Schoemaker HE,May O. Biocatalytic reductions: from lab curiosity to “first choice”. Acc Chem Res 2007; 40: 1260–1266.
- 44 Matsuda T,Yamanaka R,Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry 2009; 20: 513–557.
- 45 Fischer T,Pietruszka J. Key-building blocks via enzyme-mediated synthesis. Top Curr Chem 2010; 297: 1–43.