Copper Removal with Zeolite/Polylactic Acid Beads: Neural Networks and Fixed-Bed Column Insights
Kaila C. Alcantara
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorKristine V. Lucido
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorKirk Hubert R. Mabilangan
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorRhea May Lourene V. Magsino
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorAssoc. Prof. Anita P. Aquino
College of Arts and Sciences, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
Analytical Research Center, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
Search for more papers by this authorCorresponding Author
Assoc. Prof. Reygan H. Sangalang
College of Arts and Sciences, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Reymark D. Maalihan
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Department of Coatings and Polymeric Materials, North Dakota State University, 1340 Administration Ave, Fargo, North Dakota, 58102 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorKaila C. Alcantara
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorKristine V. Lucido
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorKirk Hubert R. Mabilangan
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorRhea May Lourene V. Magsino
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Search for more papers by this authorAssoc. Prof. Anita P. Aquino
College of Arts and Sciences, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
Analytical Research Center, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
Search for more papers by this authorCorresponding Author
Assoc. Prof. Reygan H. Sangalang
College of Arts and Sciences, Batangas State University, Pablo Borbon Campus, Rizal Avenue Extension, Batangas City, 4200 Philippines
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Reymark D. Maalihan
Department of Chemical Engineering, Batangas State University, Alangilan Campus, Golden Country Homes, Batangas City, 4200 Philippines
Department of Coatings and Polymeric Materials, North Dakota State University, 1340 Administration Ave, Fargo, North Dakota, 58102 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In this study, we evaluate the adsorption efficiency of Philippine natural zeolite/polylactic acid (PNZ/PLA) composite beads for copper removal in fixed-bed columns. The beads were synthesized via alginate cross-linking and characterized for structural, thermal, and adsorption properties. Fourier-transform infrared (FTIR) spectroscopy confirmed polymer–zeolite interactions and Cu2+ coordination, whereas thermogravimetric analysis (TGA) and X-ray diffraction (XRD) indicated improved thermal stability and zeolite modifications. Scanning electron microscopy (SEM)–X-ray spectroscopy (EDX) verified Cu2+ uptake and reduced porosity. Response surface methodology (RSM) optimization predicted high removal efficiency, validated experimentally. Breakthrough modeling confirmed mass transfer–controlled adsorption, and artificial neural network (ANN) provided superior predictive accuracy. Reusability tests showed sustained adsorption, highlighting our beads’ potential for wastewater treatment.
Supporting Information
Filename | Description |
---|---|
ceat70024-sup-0001-SuppMat.docx7.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. C. Emenike, A. G. Adeniyi, P. E. Omuku, K. C. Okwu, K. O. Iwuozor, J. Water Process Eng. 2022, 47, 102715. DOI: https://doi.org/10.1016/j.jwpe.2022.102715
- 2Y. Ge, X. Cui, C. Liao, Z. Li, Chem. Eng. J. 2017, 311, 126–134. DOI: https://doi.org/10.1016/j.cej.2016.11.079
- 3H. Sun, J. Han, C. Kong, J. Zhan, L. Chen, Y. Zhao, J. Water Process Eng. 2025, 71, 107374. DOI: https://doi.org/10.1016/j.jwpe.2025.107374
- 4M. Rodríguez-Galán, F. M. Baena-Moreno, S. Vázquez, F. Arroyo-Torralvo, L. F. Vilches, Z. Zhang, Environ. Chem. Lett. 2019, 17 (4), 1529–1538. DOI: https://doi.org/10.1007/s10311-019-00894-w
- 5N. A. A. Qasem, R. H. Mohammed, D. U. Lawal, npj Clean Water 2021, 4 (1), 36. DOI: https://doi.org/10.1038/s41545-021-00127-0
- 6D. S. Malik, C. K. Jain, A. K. Yadav, ChemBioEng Rev. 2018, 5 (3), 173–179. DOI: https://doi.org/10.1002/cben.201700018
- 7R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A. P. Tiwari, H. Y. Kim, M. K. Joshi, J. Environ. Chem. Eng. 2021, 9 (4), 105688. DOI: https://doi.org/10.1016/j.jece.2021.105688
- 8R. H. Sangalang, Orient. J. Chem. 2022, 38 (2), 227–237. DOI: https://doi.org/10.13005/ojc/380202
- 9L. Bautista-Patacsil, M. A. Magbitang, M. J. Atega, R. C. Eusebio, M. Borines, R. Maalihan, M. C. Detras, Chem. Eng. Trans. 2024, 110, 427–432. DOI: https://doi.org/10.3303/CET24110072
10.3303/CET24110072 Google Scholar
- 10R. J. A. Bool, G. C. Luwalhati, N. E. Y. Tan, A. P. Aquino, R. Maalihan, Mater. Today Proc. 2022, 65, 3312–3320. DOI: https://doi.org/10.1016/j.matpr.2022.05.396
- 11Y. Chen, X. Liu, R. Zhou, J. Qiao, J. Liu, R. Cai, J. Liu, J. Rong, Y. Chen, Int. J. Biol. Macromol. 2024, 278, 135000. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135000
- 12Md. M. Rahman, Md. I. Hossain, B. C. Ghos, Md. J. Uddin, S. Knani, Md. Waliullah, J. Environ. Chem. Eng. 2025, 13 (2), 115908. DOI: https://doi.org/10.1016/j.jece.2025.115908
- 13P. Rajandran, N. Masngut, N. H. A. Manas, N. I. W. Azelee, S. F. Z. M. Fuzi, M. A. H. Bunyamin, Int. J. Environ. Sci. Technol. 2025, 22 (5), 3943–3964. DOI: https://doi.org/10.1007/s13762-024-06034-4
- 14H. Patel, Appl. Water Sci. 2019, 9 (3), 45. DOI: https://doi.org/10.1007/s13201-019-0927-7
- 15R. R. Schio, N. P. G. Salau, E. S. Mallmann, G. L. Dotto, Chem. Eng. Commun. 2021, 208 (8), 1081–1092. DOI: https://doi.org/10.1080/00986445.2020.1746655
- 16M. Yusuf, K. Song, L. Li, Colloids Surf., A 2020, 585, 124076. DOI: https://doi.org/10.1016/j.colsurfa.2019.124076
- 17R. D. Maalihan, Mater. Sci. Forum 2022, 1053, 41–46. DOI: https://doi.org/10.4028/p-6s4jp4
10.4028/p-6s4jp4 Google Scholar
- 18S. Chowdhury, P. D. Saha, Environ. Sci. Pollut. Res. 2013, 20 (2), 1050–1058. DOI: https://doi.org/10.1007/s11356-012-0912-2
- 19E. M. Mistar, I. Hasmita, T. Alfatah, A. Muslim, M. D. Supardan, JSM 2019, 48 (4), 719–725. DOI: https://doi.org/10.17576/jsm-2019-4804-03
- 20B. M. W. P. K. Amarasinghe, R. A. Williams, Chem. Eng. J. 2007, 132 (1–3), 299–309. DOI: https://doi.org/10.1016/j.cej.2007.01.016
- 21H. P. Chao, C. C. Chang, A. Nieva, J. Ind. Eng. Chem. 2014, 20 (5), 3408–3414. DOI: https://doi.org/10.1016/j.jiec.2013.12.027
- 22G. S. Simate, S. J. Ndlovu, J. Ind. Eng. Chem. 2015, 21, 635–643. DOI: https://doi.org/10.1016/j.jiec.2014.03.031
- 23A. Tabatabaeefar, A. R. Keshtkar, M. Talebi, H. Abolghasemi, Chem. Eng. Technol. 2020, 43 (2), 343–354. DOI: https://doi.org/10.1002/ceat.201900231
- 24L. Velarde, M. S. Nabavi, E. Escalera, M. L. Antti, F. Akhtar, Chemosphere 2023, 328, 138508. DOI: https://doi.org/10.1016/j.chemosphere.2023.138508
- 25O. Abdelwahab, W. M. Thabet, Egypt. J. Aquat. Res. 2023, 49 (4), 431–443. DOI: https://doi.org/10.1016/j.ejar.2023.11.004
- 26M. K. Tufail, M. Ifrahim, M. Rashid, I. Ul Haq, R. Asghar, U. T. Uthappa, M. Selvaraj, M. Kurkuri, Sep. Purif. Technol. 2025, 354, 128739. DOI: https://doi.org/10.1016/j.seppur.2024.128739
- 27G. K. Mamytbekov, D. A. Zheltov, O. S. Milts, Y. R. Nurtazin, Colloids Interfaces 2024, 8 (1), 8. DOI: https://doi.org/10.3390/colloids8010008
- 28U. Habiba, T. A. Siddique, T. C. Joo, A. Salleh, B. C. Ang, A. M. Afifi, Carbohydr. Polym. 2017, 157, 1568–1576. DOI: https://doi.org/10.1016/j.carbpol.2016.11.037
- 29D. A. Kajtár, C. Kenyó, K. Renner, J. Móczó, E. Fekete, C. Kröhnke, B. Pukánszky, Composites, Part B 2017, 114, 386–394. DOI: https://doi.org/10.1016/j.compositesb.2016.12.015
- 30R. D. Maalihan, J. C. V. Aggari, A. S. Alon, R. B. Latayan, F. J. P. Montalbo, A. D. Javier, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 2024, 09544089241247454. (Available online: 24 April 2024). DOI: https://doi.org/10.1177/09544089241247454
- 31R. D. Maalihan, L. I. B. Briones, E. P. Canarias, G. P. Lanuza, Mater. Today: Proc. 2023, S2214785323048125. (Available online: 21 September 2023). DOI: https://doi.org/10.1016/j.matpr.2023.09.140
10.1016/j.matpr.2023.09.140 Google Scholar
- 32J. A. Macalalad, S. F. Robiso, J. M. T. Opiña, V. G. G. Mendoza, A. L. P. De Ocampo, R. D. Maalihan, Mater. Sci. Forum 2023, 1090, 23–28. DOI: https://doi.org/10.4028/p-ll5i2t
10.4028/p-ll5i2t Google Scholar
- 33R. Rusmin, B. Sarkar, Y. Liu, S. McClure, R. Naidu, Appl. Surf. Sci. 2015, 353, 363–375. DOI: https://doi.org/10.1016/j.apsusc.2015.06.124
- 34M. Vandenbossche, M. Jimenez, M. Casetta, M. Traisnel, Crit. Rev. Environ. Sci. Technol. 2015, 45 (15), 1644–1704. DOI: https://doi.org/10.1080/10643389.2014.966425
- 35S. T. Mane, S. Ponrathnam, N. Chavan, Can. Chem. Trans. 2016, 3, 473–485. DOI: https://doi.org/10.13179/canchemtrans.2015.03.04.0245
10.13179/canchemtrans.2015.03.04.0245 Google Scholar
- 36J. Kurczewska, J. Water Process Eng. 2022, 48, 102928. DOI: https://doi.org/10.1016/j.jwpe.2022.102928
- 37H. Xu, Z. Ou, W. Li, T. Hu, Y. Zhang, H. Xu, J. Wang, Y. Li, Chem. Eng. J. 2024, 492, 151842. DOI: https://doi.org/10.1016/j.cej.2024.151842
- 38M. Brzeziński, M. Socka, B. Kost, Polym. Int. 2019, 68 (6), 997–1014. DOI: https://doi.org/10.1002/pi.5753
- 39S. Ampawan, N. Phreecha, S. Chantarak, W. Chinpa, Int. J. Biol. Macromol. 2023, 225, 1607–1619. DOI: https://doi.org/10.1016/j.ijbiomac.2022.11.218
- 40K. Sahithya, D. Das, N. Das, Process Saf. Environ. Prot. 2016, 99, 43–54. DOI: https://doi.org/10.1016/j.psep.2015.10.009
- 41R. Fathy, E. Ragab, K. A. Ali, Chem. Pap. 2023, 77 (10), 6203–6216. DOI: https://doi.org/10.1007/s11696-023-02932-y
- 42N. Kataria, V. K. Garg, J. Mol. Liq. 2018, 271, 228–239. DOI: https://doi.org/10.1016/j.molliq.2018.08.135
- 43N. Al-Mahbashi, S. R. M. Kutty, A. H. Jagaba, A. Al-Nini, M. Ali, A. A. H. Saeed, A. A. S. Ghaleb, U. Rathnayake, Adv. Civ. Eng. 2022, 2022 (1), 3590462. DOI: https://doi.org/10.1155/2022/3590462
10.1155/2022/3590462 Google Scholar
- 44M. Safardastgerdi, F. Doulati Ardejani, N. M. Mahmoodi, Miner. Eng. 2023, 204, 108423. DOI: https://doi.org/10.1016/j.mineng.2023.108423
- 45M. B. Z. Gili, F. A. Pares, A. L. G. Nery, N. R. D. Guillermo, E. J. Marquez, E. M. Olegario, Mater. Res. Express 2020, 6 (12), 125552. DOI: https://doi.org/10.1088/2053-1591/ab6c8b
10.1088/2053-1591/ab6c8b Google Scholar
- 46D. E. Tsaplin, V. A. Ostroumova, L. A. Kulikov, A. V. Zolotukhina, A. A. Sadovnikov, M. D. Kryuchkov, S. V. Egazaryants, A. L. Maksimov, K. Wang, Z. Luo, E. R. Naranov, Catalysts 2023, 13 (2), 216. DOI: https://doi.org/10.3390/catal13020216
- 47S. Kahraman, A. Katırcı, A. Aytaç, S. Veli, F. U. Nigiz, Appl. Clay Sci. 2025, 268, 107756. DOI: https://doi.org/10.1016/j.clay.2025.107756
- 48H. Choi, S. M. Roy, T. Kim, Int. J. Biol. Macromol. 2024, 280, 135797. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135797
- 49G. Ciarleglio, F. Cinti, E. Toto, M. G. Santonicola, Gels 2023, 9 (9), 714. DOI: https://doi.org/10.3390/gels9090714
- 50S. Li, J. Hao, S. Yang, Y. Wang, Y. Li, E. Tao, Int. J. Biol. Macromol. 2024, 267, 131484. DOI: https://doi.org/10.1016/j.ijbiomac.2024.131484
- 51F. J. H. T. V. Ramos, M. D. F. V. Marques, J. G. P. Rodrigues, V. D. O. Aguiar, F. S. Da Luz, A. R. De Azevedo, S. N. Monteiro, CaseStud. Constr. Mater. 2022, 16, e00795. DOI: https://doi.org/10.1016/j.cscm.2021.e00795
10.1016/j.cscm.2021.e00795 Google Scholar
- 52M. M. Motsa, T. A. M. Msagati, J. M. Thwala, B. B. Mamba, Desalin. Water Treat. 2015, 53 (10), 2604–2612. DOI: https://doi.org/10.1080/19443994.2013.867537
- 53W. S. Wan Ngah, L. C. Teong, R. H. Toh, M. A. K. Hanafiah, Chem. Eng. J. 2013, 223, 231–238. DOI: https://doi.org/10.1016/j.cej.2013.02.090
- 54S. E. Marrane, K. Dânoun, Y. Essamlali, S. Aboulhrouz, S. Sair, O. Amadine, I. Jioui, A. Rhihil, M. Zahouily, RSC Adv. 2023, 13 (45), 31935–31947. DOI: https://doi.org/10.1039/D3RA04974D
- 55D. Bendahou, A. Bendahou, Y. Grohens, H. Kaddami, Ind. Crops Prod. 2015, 72, 107–118. DOI: https://doi.org/10.1016/j.indcrop.2014.12.055
- 56G. P. Barbosa, H. S. Debone, P. Severino, E. B. Souto, C. F. Da Silva, Mater. Sci. Eng. C 2016, 60, 246–254. DOI: https://doi.org/10.1016/j.msec.2015.11.034
- 57V. Krstić, T. Urošević, B. Pešovski, Chem. Eng. Sci. 2018, 192, 273–287. DOI: https://doi.org/10.1016/j.ces.2018.07.022
- 58Y. Dong, D. Sang, C. He, X. Sheng, L. Lei, RSC Adv. 2019, 9 (50), 29015–29022. DOI: https://doi.org/10.1039/C9RA05251H
- 59M. A. Azka, S. M. Sapuan, H. Abral, E. S. Zainudin, F. A. Aziz, Int. J. Biol. Macromol. 2024, 268, 131845. DOI: https://doi.org/10.1016/j.ijbiomac.2024.131845
- 60W. C. Tsai, M. D. G. De Luna, H. L. P Bermillo-Arriesgado, C. M. Futalan, J. I. Colades, M. W. Wan, Int. J. Polym. Sci. 2016, 2016, 1–11. DOI: https://doi.org/10.1155/2016/1608939
- 61M. Calero, I. Iáñez-Rodríguez, A. Pérez, M. A. Martín-Lara, G. Blázquez, Bioresour. Technol. 2018, 252, 100–109. DOI: https://doi.org/10.1016/j.biortech.2017.12.074
- 62J. Li, B. Jiang, Y. Liu, C. Qiu, J. Hu, G. Qian, W. Guo, H. H. Ngo, J. Clean Prod. 2017, 158, 51–58. DOI: https://doi.org/10.1016/j.jclepro.2017.04.156