WO3 Gasochromic Materials for Hydrogen Leakage Detection: Synthesis, Properties, and Applications
Corresponding Author
Prof., Dr. Xuhai Pan
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Nanjing Vocational University of Industry Technology, Yangshan North Road, Qixia District, Nanjing, 210023 China
Petrochemical Industry Engineering Laboratory of Hydrogen Safety Technology, Puzhu South Road, Pukou District, Nanjing, 211816 China
E-mail: [email protected]
Search for more papers by this authorDali Wu
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorQingwan Xie
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorXiaowei Zang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorChenggong Zhang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorMin Hua
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorJuncheng Jiang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Prof., Dr. Xuhai Pan
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Nanjing Vocational University of Industry Technology, Yangshan North Road, Qixia District, Nanjing, 210023 China
Petrochemical Industry Engineering Laboratory of Hydrogen Safety Technology, Puzhu South Road, Pukou District, Nanjing, 211816 China
E-mail: [email protected]
Search for more papers by this authorDali Wu
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorQingwan Xie
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorXiaowei Zang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorChenggong Zhang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorMin Hua
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorJuncheng Jiang
College of Safety Science and Engineering, Nanjing Tech University, Puzhu South Road, Pukou District, Nanjing, 211816 China
Search for more papers by this authorAbstract
During the production, transportation, storage, and use of hydrogen energy, there are risks of hydrogen leakage and secondary derivative accidents. Rapid, accurate, and in situ measurement of hydrogen leakage has important academic significance and broad application prospects. This review presents the primary physical and chemical properties of tungsten trioxide and discusses the physical and chemical mechanisms of its interaction with hydrogen. It examines the gasochromic (GC) characteristics and patterns of tungsten trioxide materials of varying sizes and compares the advantages and disadvantages of current synthesis methods. Additionally, strategies to enhance the GC properties of tungsten trioxide are analyzed. To realize the development of low-cost, high-efficiency, and high-reliability tungsten trioxide GC materials, the future challenges and development outlook of tungsten trioxide GC materials were put forward finally.
References
- 1P. S. Chauhan, S. Bhattacharya, Int. J. Hydrogen Energy 2019, 44 (47), 26076–26099. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.052
- 2T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuator B Chem. 2011, 157 (2), 329–352. DOI: https://doi.org/10.1016/j.snb.2011.04.070
- 3Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Int. J. Hydrogen Energy 2017, 42 (31), 20386–20397. DOI: https://doi.org/10.1016/j.ijhydene.2017.06.066
- 4Y. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, Y. Zhao, Sens. Actuator B Chem. 2017, 244, 393–416. DOI: https://doi.org/10.1016/j.snb.2017.01.004
- 5S. H. Hwang, Y. K. Kim, S. M. Jeong, C. Choi, K. Y. Son, S. K. Lee, S. K. Lim, Text. Res. J. 2020, 90 (19–20), 2198–2211. DOI: https://doi.org/10.1177/0040517520912729
- 6Y. K. Kim, S. H. Hwang, S. M. Jeong, K. Y. Son, S. K. Lim, Talanta 2018, 188, 356–364. DOI: https://doi.org/10.1016/j.talanta.2018.06.010
- 7C. W. Hu, Y. Yamada, K. Yoshimura, Chem. Commun. 2017, 53 (22), 3242–3245. DOI: https://doi.org/10.1039/C7CC00077D
- 8K. You, F. Cao, G. Wu, P. Zhao, H. Huang, Z. Wang, Y. Hu, H. Gu, J. Wang, Mater. Chem. Phys. 2019, 227, 111–116. DOI: https://doi.org/10.1016/j.matchemphys.2019.01.070
- 9I. H. Yoo, S. S. Kalanur, H. Seo, J. Alloys Compd. 2019, 788, 936–943. DOI: https://doi.org/10.1016/j.jallcom.2019.02.298
- 10S. S. Kalanur, Y. A. Lee, H. Seo, RSC Adv. 2015, 5 (12), 9028–9034. DOI: https://doi.org/10.1039/C4RA11067F
- 11C. W. Hu, Y. Yamada, K. Yoshimura, J. Mater. Chem. C 2016, 4 (23), 5390–5397. DOI: https://doi.org/10.1039/C6TC01541G
- 12P. Ngene, T. Radeva, M. Slaman, R. J. Westerwaal, H. Schreuders, B. Dam, Adv. Funct. Mater. 2014, 24 (16), 2374–2382. DOI: https://doi.org/10.1002/adfm.201303065
- 13H. Shanak, H. Schmitt, J. Nowoczin, K.-H. Ehses, J. Mater. Sci. 2005, 40 (13), 3467–3474. DOI: https://doi.org/10.1007/s10853-005-2851-5
- 14S. Cho, P. Pandey, J. Park, T.-W. Lee, H. Ahn, H. Choi, D.-W. Kang, Chem. Eng. J. 2022, 446, 137388. DOI: https://doi.org/10.1016/j.cej.2022.136862
- 15S. S. Kalanur, J. Heo, I. H. Yoo, H. Seo, Int. J. Hydrogen Energy 2017, 42 (26), 16901–16908. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.172
- 16P. J. Shaver, Appl. Phys. Lett. 1967, 11 (8), 255–257. DOI: https://doi.org/10.1063/1.1755123
- 17A. Mirzaei, J. H. Kim, H. W. Kim, S. S. Kim, Appl. Sci. 2019, 9 (9), 1775. DOI: https://doi.org/10.3390/app9091775
- 18K. Thummavichai, Y. Xia, Y. Zhu, Prog. Mater. Sci. 2017, 88, 281–324. DOI: https://doi.org/10.1016/j.pmatsci.2017.04.003
- 19C. Gao, X. GUO, L. Nie, X. Wu, L. Peng, J. Chen, Int. J. Hydrogen Energy 2022, 48 (6), 2442–2465. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.100
- 20P. M. Woodward, A. W. Sleight, T. Vogt, J. Phys. Chem. Solids 1995, 56 (10), 1305–1315. DOI: https://doi.org/10.1016/0022-3697(95)00063-1
- 21R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Electrochim. Acta 2018, 274, 217–223. DOI: https://doi.org/10.1016/j.electacta.2018.04.109
- 22K. Bange, Sol. Energy Mater. Sol. Cell. 1999, 58 (1), 1–131. DOI: https://doi.org/10.1016/S0927-0248(98)00196-2
- 23H. Yang, H. Sun, Q. Li, P. Li, K. Song, B. Song, L. Wang, Vacuum 2019, 164, 411–420. DOI: https://doi.org/10.1016/j.vacuum.2019.03.053
- 24H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-Zadeh, Adv. Funct. Mater. 2011, 21 (12), 2175–2196. DOI: https://doi.org/10.1002/adfm.201002477
- 25Z. Hua, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, Thin. Solid Films 2013, 548, 677–682. DOI: https://doi.org/10.1016/j.tsf.2013.04.088
- 26S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, G. Sberveglieri, Sens. Actuator B Chem. 2005, 111–112, 111–116. DOI: https://doi.org/10.1016/j.snb.2005.06.066
- 27M. Penza, C. Martucci, G. Cassano, Sens. Actuator B Chem. 1998, 50 (1), 52–59. DOI: https://doi.org/10.1016/S0925-4005(98)00156-7
- 28L. Sangaletti, L. E. Depero, G. Sberveglieri, B. Allieri, E. Bontempi, S. Groppelli, J. Cryst. Growth 1999, 198–199, 1240–1244. DOI: https://doi.org/10.1016/S0022-0248(98)01030-6
10.1016/S0022-0248(98)01030-6 Google Scholar
- 29F. R. Sale, Thermochim. Acta 1979, 30 (1), 163–171. DOI: https://doi.org/10.1016/0040-6031(79)85051-0
- 30Z. Shen, Z. Zhao, J. Qian, Z. Peng, X. Fu, J. Mater. Res. 2016, 31 (8), 1065–1076. DOI: https://doi.org/10.1557/jmr.2016.106
- 31X. Zhong, Y. Sun, X. Chen, G. Zhuang, X. Li, J. G. Wang, Adv. Funct. Mater. 2016, 26 (32), 5778–5786. DOI: https://doi.org/10.1002/adfm.201601732
- 32C. Avellaneda, Solid State Ionics 2003, 165 (1–4), 117–121. DOI: https://doi.org/10.1016/j.ssi.2003.08.023
- 33C. Bechinger, E. Wirth, P. Leiderer, Appl. Phys. Lett. 1996, 68 (20), 2834–2836. DOI: https://doi.org/10.1063/1.116340
- 34L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 2017, 391, 202–210. DOI: https://doi.org/10.1016/j.apsusc.2016.07.055
- 35T. Paik, M. Cargnello, T. R. Gordon, S. Zhang, H. Yun, J. D. Lee, H. Y. Woo, S. J. Oh, C. R. Kagan, P. Fornasiero, C. B. Murray, ACS Energy Lett. 2018, 3 (8), 1904–1910. DOI: https://doi.org/10.1021/acsenergylett.8b00925
- 36Y. Shen, H. Zhu, R. Huang, L. Zhao, S. Yan, Sci. China Ser. B-Chem. 2009, 52 (5), 609–614. DOI: https://doi.org/10.1007/s11426-009-0095-y
- 37M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J. Y. Ruzicka, D. P. Anderson, G. G. Andersson, W. Wlodarski, Int. J. Hydrogen Energy 2013, 38 (29), 12865–12877. DOI: https://doi.org/10.1016/j.ijhydene.2013.07.089
- 38H. Cheong, H. C. Jo, K. M. Kim, S. H. Lee, J. Korean Phys. Soc. 2005, 46, 121–124.
- 39R. Jolly Bose, N. Illyasukutty, K. S. Tan, R. S. Rawat, M. Vadakke Matham, H. Kohler, V. P. Mahadevan Pillai, Appl. Surf. Sci. 2018, 440, 320–330. DOI: https://doi.org/10.1016/j.apsusc.2018.01.098
- 40J. Z. Ou, M. H. Yaacob, J. L. Campbell, M. Breedon, K. Kalantar-Zadeh, W. Wlodarski, Sens. Actuator B Chem. 2012, 166–167, 1–6. DOI: https://doi.org/10.1016/j.snb.2011.01.033
- 41S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, P. S. Patil, Sens. Actuator B Chem. 2017, 240, 426–433. DOI: https://doi.org/10.1016/j.snb.2016.08.177
- 42C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, T. Kerdcharoen, Sensors 2010, 10 (8), 7705–7715. DOI: https://doi.org/10.3390/s100807705
- 43C. H. Kim, Y. S. Kim, J. Y. Choi, I. S. Lee, B. C. Cha, D. W. Kim, J. Lee, RSC Adv. 2022, 12 (54), 35320–35327. DOI: https://doi.org/10.1039/D2RA06472C
- 44P. J. Morankar, R. U. Amate, G. T. Chavan, A. M. Teli, D. S. Dalavi, C. W. Jeon, J. Alloys Compd. 2023, 945, 169363. DOI: https://doi.org/10.1016/j.jallcom.2023.169363
- 45Y. Yin, T. Gao, Q. Xu, G. Cao, Q. Chen, H. Zhu, C. Lan, C. Li, J. Mater. Chem. A 2020, 8 (21), 10973–10982. DOI: https://doi.org/10.1039/D0TA02079F
- 46Y. Yin, C. Lan, H. Guo, C. Li, ACS Appl. Mater. Interfaces 2016, 8 (6), 3861–3867. DOI: https://doi.org/10.1021/acsami.5b10665
- 47K. P. Sibin, S. John, H. C. Barshilia, Sol. Energy Mater. Sol. Cell. 2015, 133, 1–7. DOI: https://doi.org/10.1016/j.solmat.2014.11.002
- 48M. E. A. Warwick, I. Ridley, R. Binions, Sol. Energy Mater. Sol. Cell. 2015, 140, 253–265. DOI: https://doi.org/10.1016/j.solmat.2015.04.022
- 49L. Nie, X. Guo, C. Gao, X. Wu, J. Chen, L. Peng, Mater. Lett. 2022, 314, 131805. DOI: https://doi.org/10.1016/j.matlet.2022.131805
- 50S. Mathuri, M. M. Margoni, K. Ramamurthi, R. R. Babu, V. Ganesh, Appl. Surf. Sci. 2018, 449, 77–91. DOI: https://doi.org/10.1016/j.apsusc.2018.01.033
- 51G. Gao, S. Xue, H. Wang, Z. Zhang, G. Wu, T. T. Debela, H. S. Kang, ACS Sustain Chem. Eng. 2021, 9 (51), 17319–17329. DOI: https://doi.org/10.1021/acssuschemeng.1c06228
- 52W. Feng, G. Wu, G. Gao, J. Mater. Chem. A 2013, 2 (3), 585–590. DOI: https://doi.org/10.1039/C3TA13715E
- 53L. Nie, X. Guo, C. Gao, X. Wu, J. Chen, L. Peng, J. Mater. Sci. Mater. Electron. 2022, 33 (3), 1604–1617. DOI: https://doi.org/10.1007/s10854-022-07694-z
- 54B. Zhou, W. Feng, G. Gao, G. Wu, Y. Chen, W. Li, Mater. Res. Express 2017, 4 (11), 115702. DOI: https://doi.org/10.1088/2053-1591/aa955c
- 55S. Xue, G. Gao, Z. Zhang, X. Jiang, J. Shen, G. Wu, H. Dai, Y. Xu, Y. Xiao, ACS Appl. Nano Mater 2021, 4 (8), 8368–8375. DOI: https://doi.org/10.1021/acsanm.1c01557
- 56A. Wisitsoorat, M. Z. Ahmad, M. H. Yaacob, M. Horpratum, D. Phakaratkul, T. Lomas, A. Tuantranont, W. Wlodarski, Sens. Actuator B Chem. 2013, 182, 795–801. DOI: https://doi.org/10.1016/j.snb.2013.03.091
- 57Z. Dimitrova, D. Gogova, Mater. Res. Bull. 2005, 40 (2), 333–340. DOI: https://doi.org/10.1016/j.materresbull.2004.10.017
- 58M. Z. Ahmad, A. Z. Sadek, M. H. Yaacob, D. P. Anderson, G. Matthews, V. B. Golovko, W. Wlodarski, Sens. Actuator B Chem. 2013, 179, 125–130. DOI: https://doi.org/10.1016/j.snb.2012.09.102
- 59M. Regragui, M. Addou, B. El Idrissi, J. C. Bernède, A. Outzourhit, E. Ec-chamikh, Mater. Chem. Phys. 2001, 70 (1), 84–89. DOI: https://doi.org/10.1016/S0254-0584(00)00464-8
- 60Y. Long, J. Zhong, W. Liang, L. Shen, H. Xu, H. Deng, AIP Adv. 2018, 8 (8), 085314. DOI: https://doi.org/10.1063/1.5038949
- 61O. F. Schirmer, J. Phys. Colloques 1980, 41 (6), 479–484. DOI: https://doi.org/10.1051/jphyscol:19806125
10.1051/jphyscol:19806125 Google Scholar
- 62J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, C. Bechinger, J. Electrochem. Soc. 1997, 144 (6), 2022. DOI: https://doi.org/10.1149/1.1837737
- 63H. Weis, Untersuchung Gasochrom Schaltender Wolframoxide, Ph.D. Thesis, RWTH Aachen University 2002.
- 64S.-H. Lee, H. M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascarenhas, J. Roland Pitts, S. K. Deb, Electrochim. Acta 2001, 46 (13), 1995–1999. DOI: https://doi.org/10.1016/S0013-4686(01)00379-6
- 65S. H. Lee, H. M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascanrenhas, J. R. Pitts, S. K. Deb, J. Appl. Phys. 2000, 88 (5), 3076–3078. DOI: https://doi.org/10.1063/1.1287407
- 66A. Beck, D. Kazazis, Y. Ekinci, X. Li, E. A. Müller Gubler, A. Kleibert, M.-G. Willinger, L. Artiglia, J. A. Van Bokhoven, ACS Nano 2023, 17 (2), 1091–1099. DOI: https://doi.org/10.1021/acsnano.2c08152
- 67M. M. Bettahar, Catal. Rev. 2022, 64 (1), 87–125. DOI: https://doi.org/10.1080/01614940.2020.1787771
- 68W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. Vandevondele, Y. Ekinci, J. A. Van Bokhoven, Nature 2017, 541 (7635), 68–71. DOI: https://doi.org/10.1038/nature20782
- 69S. Khoobiar, J. Phys. Chem. 1964, 68 (2), 411–412. DOI: https://doi.org/10.1021/j100784a503
- 70R. Prins, Chem. Rev. 2012, 112 (5), 2714–2738. DOI: https://doi.org/10.1021/cr200346z
- 71S. Zhang, Z. Xia, M. Zhang, Y. Zou, H. Shen, J. Li, X. Chen, Y. Qu, Appl. Catal. B Environ. 2021, 297, 120418. DOI: https://doi.org/10.1016/j.apcatb.2021.120418
- 72H. Cheong, J. Y. Shim, J. D. Lee, J. M. Jin, S. H. Lee, J. Korean Phys. Soc. 2009, 55 (6), 2693–2696. DOI: https://doi.org/10.3938/jkps.55.2693
- 73A Georg, Thin Solid. Films 2001, 384 (2), 269–275. DOI: https://doi.org/10.1016/S0040-6090(00)01865-4
- 74A. Georg, W. Graf, R. Neumann, V. Wittwer, Sol. Energy Mater. Sol. Cell. 2000, 63 (2), 165–176. DOI: https://doi.org/10.1016/S0927-0248(00)00006-4
- 75A Georg, Solid State Ionics 2000, 127 (3), 319–328. DOI: https://doi.org/10.1016/S0167-2738(99)00273-8
- 76U. O. Krašovec, B. Orel, A. Georg, V. Wittwer, Sol. Energy 2000, 68 (6), 541–551. DOI: https://doi.org/10.1016/S0038-092X(00)00033-5
- 77H. Chen, N. Xu, S. Deng, D. Lu, Z. Li, J. Zhou, J. Chen, Nanotechnology 2007, 18 (20), 205701. DOI: https://doi.org/10.1088/0957-4484/18/20/205701
- 78C. C. Chan, W. C. Hsu, C. C. Chang, C. S. Hsu, Sens. Actuator B Chem. 2011, 157 (2), 504–509. DOI: https://doi.org/10.1016/j.snb.2011.05.008
- 79A. Inouye, S. Yamamoto, S. Nagata, M. Yoshikawa, T. Shikama, Nucl. Instrum. Meth. B 2008, 266 (2), 301–307. DOI: https://doi.org/10.1016/j.nimb.2007.11.016
- 80J. Y. Luo, S. Z. Deng, Y. T. Tao, F. L. Zhao, L. F. Zhu, L. Gong, J. Chen, N. S. Xu, J. Phys. Chem. C 2009, 113 (36), 15877–15881. DOI: https://doi.org/10.1021/jp903581s
- 81Y. Yamaguchi, S. Imamura, S. Ito, K. Nishio, K. Fujimoto, Sens. Actuator B Chem. 2015, 216, 394–401. DOI: https://doi.org/10.1016/j.snb.2015.04.020
- 82C. C. Chan, W. C. Hsu, C. C. Chang, C. S. Hsu, Sens. Actuator B Chem. 2010, 145 (2), 691–697. DOI: https://doi.org/10.1016/j.snb.2010.01.021
- 83G. D'anna, M. Giorgio, A. Riccio, Compos. Part B 2017, 119, 206–214. DOI: https://doi.org/10.1016/j.compositesb.2017.03.040
- 84Y. A. Lee, S. S. Kalanur, G. Shim, J. Park, H. Seo, Sens. Actuator B Chem. 2017, 238, 111–119. DOI: https://doi.org/10.1016/j.snb.2016.07.058
- 85S. H. Lim, B. Radha, J. Y. Chan, M. S. M. Saifullah, G. U. Kulkarni, G. W. Ho, ACS Appl. Mater. Interfaces 2013, 5 (15), 7274–7281. DOI: https://doi.org/10.1021/am401624r
- 86B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, Nanoscale 2013, 5 (6), 2505–2510. DOI: https://doi.org/10.1039/C3NR33872J
- 87F. E. Annanouch, Z. Haddi, M. Ling, F. Di Maggio, S. Vallejos, T. Vilic, Y. Zhu, T. Shujah, P. Umek, C. Bittencourt, C. Blackman, E. Llobet, ACS Appl. Mater. Interfaces 2016, 8 (16), 10413–10421. DOI: https://doi.org/10.1021/acsami.6b00773
- 88D. Sil, J. Hines, U. Udeoyo, E. Borguet, ACS Appl. Mater. Interfaces 2015, 7 (10), 5709–5714. DOI: https://doi.org/10.1021/am507531s
- 89R. D. Martínez-Orozco, R. Antaño-López, V. Rodríguez-González, New J. Chem. 2015, 39 (10), 8044–8054. DOI: https://doi.org/10.1039/C5NJ01673H
- 90Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang, J. Mater. Chem. A 2015, 3 (3), 1317–1324. DOI: https://doi.org/10.1039/C4TA05229C
- 91J. Lee, H. Koo, S. Y. Kim, S. J. Kim, W. Lee, Sens. Actuator B Chem. 2021, 327, 128930. DOI: https://doi.org/10.1016/j.snb.2020.128930
- 92R. Yeasmin, L. T. Duy, S. Han, C. Park, H. Seo, Sens. Actuator B Chem. 2023, 394, 134416. DOI: https://doi.org/10.1016/j.snb.2023.134416
- 93Y. Yamaguchi, Y. Emoto, T. Kineri, M. Fujimoto, H. Mae, A. Yasumori, K. Nishio, Ionics 2012, 18 (5), 449–453. DOI: https://doi.org/10.1007/s11581-012-0683-2
- 94W. C. Hsu, C. C. Chan, C. H. Peng, C. C. Chang, Thin Solid. Films 2007, 516 (2–4), 407–411. DOI: https://doi.org/10.1016/j.tsf.2007.07.055
- 95M. Mazur, P. Kapuścik, W. Weichbrodt, J. Domaradzki, P. Mazur, M. Kot, J. I. Flege, Materials 2023, 16 (10), 3831. DOI: https://doi.org/10.3390/ma16103831
- 96S. Okazaki, S. Johjima, Thin Solid. Films 2014, 558, 411–415. DOI: https://doi.org/10.1016/j.tsf.2014.02.080
- 97K. Nishizawa, Y. Yamada, K. Yoshimura, Thin Solid. Films 2020, 709, 138201. DOI: https://doi.org/10.1016/j.tsf.2020.138201
- 98C. Gao, X. Guo, L. Nie, X. Wu, L. Peng, J. Chen, Int. J. Hydrogen Energy 2022, 48 (7), 2849–2860. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.126
10.1016/j.ijhydene.2022.10.126 Google Scholar
- 99L. Nie, X. Guo, C. Gao, X. Wu, J. Chen, L. Peng, J. Electron. Mater. 2022, 51 (11), 6463–6474. DOI: https://doi.org/10.1007/s11664-022-09882-3
- 100G. Gao, W. Feng, G. Wu, J. Shen, Z. Zhang, X. Jin, Z. Zhang, A. Du, J. Sol–Gel Sci. Technol. 2012, 64 (2), 427–435. DOI: https://doi.org/10.1007/s10971-012-2873-9
- 101W. Qi, G. Gao, G. Wu, H. Wang, Sol. Energy Mater. Sol. Cell. 2019, 195, 63–70. DOI: https://doi.org/10.1016/j.solmat.2019.01.049
- 102G. Gao, J. Wu, G. Wu, Z. Zhang, W. Feng, J. Shen, B. Zhou, Sens. Actuator B Chem. 2012, 171–172, 1288–1291. DOI: https://doi.org/10.1016/j.snb.2012.06.028
- 103K. Takano, A. Inouye, S. Yamamoto, M. Sugimoto, M. Yoshikawa, S. Nagata, Jpn. J. Appl. Phys. 2007, 46 (9S), 6315. DOI: https://doi.org/10.1143/JJAP.46.6315
- 104M. A. Behbahani, M. Ranjbar, P. Kameli, H. Salamati, Sens. Actuator B Chem. 2013, 188, 127–136. DOI: https://doi.org/10.1016/j.snb.2013.06.097
- 105S. S. Kalanur, I. H. Yoo, Y. A. Lee, H. Seo, Sens. Actuator B Chem. 2015, 221, 411–417. DOI: https://doi.org/10.1016/j.snb.2015.06.086
- 106M. Yaacob, J. Ou, C. Oh, J. Kang, G. Sberveglieri, W. Wlodarski, Procedia Eng. 2011, 25, 1065–1068. DOI: https://doi.org/10.1016/j.proeng.2011.12.262
- 107M. U. Nisa, N. Nadeem, M. Yaseen, J. Iqbal, M. Zahid, Q. Abbas, G. Mustafa, I. Shahid, J. Nanostruct. Chem. 2023, 13 (2), 167–196. DOI: https://doi.org/10.1007/s40097-021-00464-z
- 108C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, J. Alloys Compd. 2020, 820, 153194. DOI: https://doi.org/10.1016/j.jallcom.2019.153194
- 109G. Lei, C. Lou, X. Liu, J. Xie, Z. Li, W. Zheng, J. Zhang, Sens. Actuator B Chem. 2021, 341, 129996. DOI: https://doi.org/10.1016/j.snb.2021.129996
- 110A. Yadav, P. Singh, G. Gupta, Environ. Sci.: Nano 2022, 9 (1), 40–60. DOI: https://doi.org/10.1039/D1EN00872B
- 111C. Gao, X. Guo, L. Nie, X. Wu, L. Peng, J. Chen, W. Ding, Adv. Mater. Interfaces 2022, 9 (10), 2101355. DOI: https://doi.org/10.1002/admi.202101355
- 112G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, Vol. 1, Springer, New York 2013.
10.1007/978-1-4614-7165-3 Google Scholar
- 113F. Tavakoli Foroushani, H. Tavanai, M. Ranjbar, H. Bahrami, Sens. Actuator B Chem. 2018, 268, 319–327. DOI: https://doi.org/10.1016/j.snb.2018.04.120
- 114A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M.-G. Olivier, M. Debliquy, Int. J. Hydrogen Energy 2013, 38 (5), 2565–2577. DOI: https://doi.org/10.1016/j.ijhydene.2012.11.040
- 115J. Li, Q. L. Zhao, G. Y. Zhang, J. Z. Chen, L. Zhong, L. Li, J. Huang, Z. Ma, Solid State Sci. 2010, 12 (8), 1393–1398. DOI: https://doi.org/10.1016/j.solidstatesciences.2010.05.016
- 116H. Kalhori, M. Ranjbar, H. Salamati, J. M. D. Coey, Sens. Actuator B Chem. 2016, 225, 535–543. DOI: https://doi.org/10.1016/j.snb.2015.11.044
- 117S. Yamamoto, A. Inouye, M. Yoshikawa, Nucl. Instrum. Meth. B 2008, 266 (5), 802–806. DOI: https://doi.org/10.1016/j.nimb.2007.12.092
- 118S. Yamamoto, T. Hakoda, A. Miyashita, M. Yoshikawa, Mater. Res. Express 2015, 2 (2), 026401. DOI: https://doi.org/10.1088/2053-1591/2/2/026401
- 119Z. Ghorannevis, A. Jafari, R. Alipour, M. Ghoranneviss, J. Fusion. Energy 2015, 34 (5), 1157–1161. DOI: https://doi.org/10.1007/s10894-015-9935-2
- 120A. Hemati, M. Allaf B, M. Ranjbar, P. Kameli, H. Salamati, Sol. Energy Mater. Sol. Cell. 2013, 108, 105–112. DOI: https://doi.org/10.1016/j.solmat.2012.08.018
- 121J. Y. Luo, L. Gong, H. D. Tan, S. Z. Deng, N. S. Xu, Q. G. Zeng, Y. Wang, Sens. Actuator B Chem. 2012, 171–172, 1117–1124. DOI: https://doi.org/10.1016/j.snb.2012.06.042
- 122R. Ghosh, M. B. Baker, R. Lopez, Thin Solid Films 2010, 518 (8), 2247–2249. DOI: https://doi.org/10.1016/j.tsf.2009.08.003
- 123R. Ishihara, Y. Makino, Y. Yamaguchi, K. Fujimoto, K. Nishio, Membranes 2022, 12 (3), 291. DOI: https://doi.org/10.3390/membranes12030291
- 124C. Zhang, X. Chen, X. Liu, C. Shen, Z. Huang, Z. Wang, T. Lang, C. Zhao, Y. Zhang, Z. Liu, Int. J. Hydrogen Energy 2022, 47 (9), 6415–6420. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.238
- 125G. Bramann, B. Zacharias, M. Wienecke, Third European Workshop on Optical Fibre Sensors, Society of Photo-Optical Instrumentation Engineers, Italy 2007.
- 126P. Ngene, R. J. Westerwaal, S. Sachdeva, W. Haije, L. C. P. M. de Smet, B. Dam, Angew. Chem. 2014, 126 (45), 12277–12281. DOI: https://doi.org/10.1002/ange.201406911
10.1002/ange.201406911 Google Scholar
- 127H. Wang, G. Gao, G. Wu, H. Zhao, W. Qi, K. Chen, W. Zhang, Y. Li, Int. J. Hydrogen Energy 2019, 44 (29), 15665–15676. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.026
- 128S. G. Zamharir, M. Ranjbar, H. Salamati, Sol. Energy Mater. Sol. Cell. 2014, 130, 27–35. DOI: https://doi.org/10.1016/j.solmat.2014.06.029
- 129S. Rahman, R. Tabassum, A. K. Hafiz, IEEE Sens. J. 2023, 23 (7), 6742–6749. DOI: https://doi.org/10.1109/JSEN.2023.3244633
- 130D. Li, G. Wu, G. Gao, J. Shen, F. Huang, ACS Appl. Mater. Interfaces 2011, 3 (12), 4573–4579. DOI: https://doi.org/10.1021/am200781e
- 131M. Chen, L. Zou, Z. Zhang, J. Shen, D. Li, Q. Zong, G. Gao, G. Wu, J. Shen, Z. Zhang, Carbon 2018, 130, 281–287. DOI: https://doi.org/10.1016/j.carbon.2018.01.013
- 132L. Nie, X. Guo, C. Gao, X. Wu, J. Chen, L. Peng, Mater. Lett. 2023, 331, 133428. DOI: https://doi.org/10.1016/j.matlet.2022.133428
- 133S. W. Kim, T. J. Emge, Z. Deng, R. Uppuluri, L. Collins, S. H. Lapidus, C. U. Segre, M. Croft, C. Jin, V. Gopalan, S. V. Kalinin, M. Greenblatt, Chem. Mater. 2018, 30 (3), 1045–1054. DOI: https://doi.org/10.1021/acs.chemmater.7b04941
- 134M. Okada, K. Ono, S. Yoshio, H. Fukuyama, K. Adachi, J. Am. Ceram. Soc. 2019, 102 (9), 5386–5400. DOI: https://doi.org/10.1111/jace.16414
- 135M. Su, H. Sun, Z. Tian, Z. Zhao, P. Li, Appl. Catal. A-Gen. 2022, 631, 118485. DOI: https://doi.org/10.1016/j.apcata.2022.118485
- 136K. Nishizawa, Y. Yamada, K. Yoshimura, Sol. Energy Mater. Sol. Cell. 2017, 170, 21–26. DOI: https://doi.org/10.1016/j.solmat.2017.05.058
- 137M. Ranjbar, H. Kalhori, S. M. Mahdavi, A. Iraji zad, J. Nanopart. Res. 2012, 14 (4), 803. DOI: https://doi.org/10.1007/s11051-012-0803-y
- 138F. Delalat, M. Ranjbar, H. Salamati, Sol. Energy Mater. Sol. Cell. 2016, 144, 165–172. DOI: https://doi.org/10.1016/j.solmat.2015.08.038
- 139M. Ranjbar, A. Heidari Fini, H. Kalhori, P. Kameli, H. Salamati, Sol. Energy Mater. Sol. Cell. 2015, 132, 329–336. DOI: https://doi.org/10.1016/j.solmat.2014.09.016
- 140K. Nishizawa, C. W. Hu, Y. Yamada, Sol. Energy Mater. Sol. Cell. 2022, 245, 111891. DOI: https://doi.org/10.1016/j.solmat.2022.111891