A Review of Biomass Resources and Thermochemical Conversion Technologies
Shivangi Jha
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
University of Saskatchewan, chool of Environment and Sustainability, S7N 5C8 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorJude A. Okolie
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorCorresponding Author
Ajay K. Dalai
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Correspondence: Ajay K. Dalai ([email protected]), Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada.Search for more papers by this authorShivangi Jha
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
University of Saskatchewan, chool of Environment and Sustainability, S7N 5C8 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorJude A. Okolie
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorCorresponding Author
Ajay K. Dalai
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Correspondence: Ajay K. Dalai ([email protected]), Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada.Search for more papers by this authorAbstract
Waste biomass has the potential to produce renewable fuels and fine chemicals. Biofuels derived from agricultural, forestry, and energy crop systems are promising resources to address climate change and minimize greenhouse gas emissions. The recent advances in various thermochemical technologies for the conversion of waste biomass to value-added biofuel products are discussed. A summarized outline of thermochemical technologies such as torrefaction, liquefaction, pyrolysis, and gasification is provided. An overview of different types and sources of biomass as well as their physicochemical properties is presented. The thermochemical conversion products and their environmental benefits are considered as well.
References
- 1H. Electricity, “Energy Technology Perspectives 2014 Energy Technology Perspectives 2014,” available at http://www.iea.org/media/etp/Tracking_Clean_Energy_Progress.pdf, 2014.
- 2 S. Nanda, R. Azargohar, A. K. Dalai, J. A. Kozinski, Renewable Sustainable Energy Rev. 2015, 50, 925–941. DOI: https://doi.org/10.1016/j.rser.2015.05.058
- 3Our World in Data. “Fossil fuel consumption, World,” available at https://ourworldindata.org/grapher/fossil-fuel-consumption-by-type?stackMode=relative&time=1965..latest, 2021.
- 4 S. Karimi, R. R. Karri, M. Tavakkoli Yaraki, J. R. Koduru, Environ. Chem. Lett. 2021, 19, 2873–2890. DOI: https://doi.org/10.1007/s10311-021-01208-9
- 5 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Waste Biomass Valor. 2021, 12, 2145–2169. DOI: https://doi.org/10.1007/s12649-020-01123-0
- 6 V. S. Sikarwar, M. Pohořelý, E. Meers, S. Skoblia, J. Moško, M. Jeremiáš, Fuel 2021, 294, 120533. DOI: https://doi.org/10.1016/j.fuel.2021.120533
- 7 A. Tursi, Biofuel Res. J. 2019, 6, 962–979. DOI: https://doi.org/10.18331/BRJ2019.6.2.3
- 8 J. Cai, Y. He, X. Yu, S. W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, A. V. Bridgwater, Renewable Sustainable Energy Rev. 2017, 76, 309–322. DOI: https://doi.org/10.1016/j.rser.2017.03.072
- 9 J. A. Okolie, S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Renewable Sustainable Energy Rev. 2020, 119, 109546. DOI: https://doi.org/10.1016/j.rser.2019.109546
- 10 J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, J. A. Kozinski, Sustainable Energy Fuels. 2019, 3, 578–598. DOI: https://doi.org/10.1039/c8se00565f
- 11 S. Michailos, D. Parker, C. Webb, Waste Biomass Valor. 2019, 10, 865–876. DOI: https://doi.org/10.1007/s12649-017-0151-3
- 12 P. K. Sarangi, S. Nanda, Chem. Eng. Technol. 2020, 43, 601–612. DOI: https://doi.org/10.1002/ceat.201900452
- 13 O. Pardo-Planas, H. K. Atiyeh, J. R. Phillips, C. P. Aichele, S. Mohammad, Bioresour. Technol. 2017, 245, 925–932. DOI: https://doi.org/10.1016/j.biortech.2017.08.193
- 14 T. Zhang, K. Kang, S. Nanda, A. K. Dalai, T. Xie, Y. Zhao, Chemosphere 2022, 291, 132787. DOI: https://doi.org/10.1016/j.chemosphere.2021.132787
- 15 A. Singh, S. Nanda, J. F. Guayaquil-Sosa, F. Berruti, Can. J. Chem. Eng. 2021, 99, S55–S68. DOI: https://doi.org/10.1002/cjce.23978
- 16 M. Pecchi, M. Baratieri, Renewable Sustainable Energy Rev. 2019, 105, 462–475. DOI: https://doi.org/10.1016/j.rser.2019.02.003
- 17
A. Jha, V. Amar, P. Tukkaraja, J. Sustainable Mining
2019, 18, 270–276. DOI: https://doi.org/10.1016/j.jsm.2019.11.002
10.1016/j.jsm.2019.11.002 Google Scholar
- 18 M. Weiss, F. Jacob, G. Duveiller, Remote Sens. Environ. 2020, 236, 111402. DOI: https://doi.org/10.1016/j.rse.2019.111402
- 19 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Energy Convers. Manage. 2020, 208, 112545. DOI: https://doi.org/10.1016/j.enconman.2020.112545
- 20 J. A. Okolie, A. Mukherjee, S. Nanda, A. K. Dalai, J. A. Kozinski, Ind. Eng. Chem. Res. 2021, 60, 5770–5782. DOI: https://doi.org/10.1021/acs.iecr.0c06177
- 21 T. R. Sarker, R. Azargohar, A. K. Dalai, V. Meda, Biomass Bioenergy 2021, 150, 106139. DOI: https://doi.org/10.1016/j.biombioe.2021.106139
- 22 J. Hu, T. Lei, Z. Wang, X. Yan, X. Shi, Z. Li, X. He, Q. Zhang, Energy 2014, 64, 557–566. DOI: https://doi.org/10.1016/j.energy.2013.10.028
- 23 R. Prithivirajan, S. Jayabal, S. K. Sundaram, A. P. Kumar, Int. J. Chem. Tech. Res. 2016, 9, 609–615.
- 24 R. Azargohar, S. Nanda, A. K. Dalai, J. A. Kozinski, Biomass Bioenergy 2019, 120, 458–470. DOI: https://doi.org/10.1016/j.biombioe.2018.12.011
- 25 M. Kapoor, D. Panwar, G. S. Kaira, in Agro-Industrial Wastes as Feedstock for Enzymatic Production (Eds: G. S. Dhillon, S. Kaur), Elsevier, Amsterdam 2016, 61–93. DOI: https://doi.org/10.1016/B978-0-12-802392-1.00003-4
- 26 Z. Yuan, G. Li, E. L. Hegg, Bioresour. Technol. 2018, 266, 194–202. DOI: https://doi.org/10.1016/j.biortech.2018.06.065
- 27 S. W. Kang, S. H. Kim, J. H. Park, D. C. Seo, Y. S. Ok, J. S. Cho, Environ. Sci. Pollut. Res. 2018, 25, 25813–25821. DOI: https://doi.org/10.1007/s11356-018-1888-3
- 28 M. De, R. Azargohar, A. K. Dalai, S. R. Shewchuk, Fuel 2013, 103, 570–578. DOI: https://doi.org/10.1016/j.fuel.2012.08.011
- 29 T. M. Huggins, A. Haeger, J. C. Biffinger, Z. J. Ren, Water Res. 2016, 94, 225–232. DOI: https://doi.org/10.1016/j.watres.2016.02.059
- 30 S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Waste Biomass Valor. 2016, 7, 201–235. DOI: https://doi.org/10.1007/s12649-015-9459-z
- 31 P. Basu, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, Elsevier, Amsterdam 2018.
- 32 B. Mongkhonsin, W. Nakbanpote, O. Meesungnoen, M. N. V. Prasad, Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation (Eds: M. Hasanuzzaman, M. N. V. Prasad, M. Fujita), Elsevier, Amsterdam 2018, 73–109. DOI: https://doi.org/10.1016/B978-0-12-814864-8.00004-8
- 33 T. Bhaskar, A. Pandey, in Recent Advances in Thermochemical Conversion of Biomass (Eds: A. Pandey, T. Bhaskar, M. Stöcker, R. Sukumaran), Elsevier, Amsterdam 2015, 3–30. DOI: https://doi.org/10.1016/B978-0-444-63289-0.00001-6
- 34BackGarden, What Is an Annual, Perennial, and Biennial Plant? https://backgarden.org/annual-perennial-biennial (Accessed on September 09, 2021)
- 35 P. Roy, A. Dutta, J. Gallant, Energies 2018, 11, 2794. DOI: https://doi.org/10.3390/en11102794
- 36 J. P. McCalmont, A. Hastings, N. P. McNamara, G. M. Richter, P. Robson, I. S. Donnison, J. Clifton-Brown, GCB Bioenergy 2017, 9, 489–507. DOI: https://doi.org/10.1111/gcbb.12294
- 37 A. Singh, S. Nanda, F. Berruti, in Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals (Eds: S. Nanda, D.-V. N. Vo, P. K. Sarangi), Springer, New York 2020, 195–220. DOI: https://doi.org/10.1007/978-981-15-1804-1_9
- 38 S. Nanda, A. K. Dalai, J. A. Kozinski, Biomass Bioenergy 2015, 95, 378–387. DOI: https://doi.org/10.1016/j.biombioe.2016.05.023
- 39 F. Pattnaik, S. Nanda, V. Kumar, S. Naik, A. K. Dalai, Biomass Bioenergy 2021, 145, 105965. DOI: https://doi.org/10.1016/j.biombioe.2021.105965
- 40 S. B. McLaughlin, L. A. Kszos, Biomass Bioenergy 2005, 28, 515–535. DOI: https://doi.org/10.1016/j.biombioe.2004.05.006
- 41 C. J. Atkinson, Biomass Bioenergy 2009, 33, 752–759. DOI: https://doi.org/10.1016/j.biombioe.2009.01.005
- 42 V. Tilvikiene, Z. Kadziuliene, Z. Dabkevicius, K. Venslauskas, K. Navickas, Ind. Crops Prod. 2016, 84, 87–96. DOI: https://doi.org/10.1016/j.indcrop.2016.01.033
- 43 T. Liu, T. Huffman, S. Kulshreshtha, B. McConkey, Y. Du, M. Green, J. Liu, J. Shang, X. Geng, Appl. Energy 2017, 205, 477–485. DOI: https://doi.org/10.1016/j.apenergy.2017.07.126
- 44
C. Marzo, A. B. Díaz, I. Caro, A. Blandino, in Bioethanol Production from Food Crops (Eds: R. C. Ray, S. Ramachandran), Academic Press, New York
2019, 61–79. DOI: https://doi.org/10.1016/b978-0-12-813766-6.00004-7
10.1016/B978-0-12-813766-6.00004-7 Google Scholar
- 45 G. Koçar, N. Civaş, Renewable Sustainable Energy Rev. 2013, 28, 900–916. DOI: https://doi.org/10.1016/j.rser.2013.08.022
- 46
M. Rahman, M. M. de Jiménez, in Breeding Oilseed Crops for Sustainable Production: Opportunities and Constraints (Ed: S. Gupta), Elsevier, Amsterdam
2016, 361–376. DOI: https://doi.org/10.1016/B978-0-12-801309-0.00015-X
10.1016/B978-0-12-801309-0.00015-X Google Scholar
- 47 W. T. Embaye, J. S. Bergtold, D. Archer, C. Flora, G. C. Andrango, M. Odening, J. Buysse, Energy Econ 2018, 71, 311–320. DOI: https://doi.org/10.1016/j.eneco.2018.03.005
- 48 C. Ciubota-Rosie, J. R. Ruiz, M. J. Ramos, Á. Pérez, Fuel 2013, 105, 572–577. DOI: https://doi.org/10.1016/j.fuel.2012.09.062
- 49 N. Winchester, C. Wollersheim, R. Clewlow, N. C. Jost, S. Paltsev, J. M. Reilly, I. A. Waitz, J. Transp. Econ. Policy 2013, 47, 1–15.
- 50 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Environ. Pollut. 2021, 283, 117040. DOI: https://doi.org/10.1016/j.envpol.2021.117040
- 51 M. A. Azeez, Pulp Paper Process. 2018, 55–86.
- 52 T. M. Abdel-Fattah, M. E. Mahmoud, S. B. Ahmed, M. D. Huff, J. W. Lee, S. Kumar, J. Ind. Eng. Chem. 2015, 22, 103–109. DOI: https://doi.org/10.1016/j.jiec.2014.06.030
- 53 N. Le Truong, L. Gustavsson, Appl. Energy 2013, 104, 623–632. DOI: https://doi.org/10.1016/j.apenergy.2012.11.041
- 54 S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Waste Biomass Valor. 2016, 7, 201–235. DOI: https://doi.org/10.1007/s12649-015-9459-z
- 55 B. R. Patra, A. Mukherjee, S. Nanda, A. K. Dalai, Environ. Chem. Lett. 2021, 19, 2237–2259. DOI: https://doi.org/10.1007/s10311-020-01165-9
- 56 M. Islam, A. Fartaj, D. S. K. Ting, Renewable Sustainable Energy Rev. 2004, 8, 493–519. DOI: https://doi.org/10.1016/j.rser.2003.12.006
- 57 C. Cambero, M. Hans Alexandre, T. Sowlati, Resour. Conserv. Recycl. 2015, 105, 59–72. DOI: https://doi.org/10.1016/j.resconrec.2015.10.014
- 58 B. J. Stanton, A. Bourque, M. Coleman, M. Eisenbies, R. M. Emerson, J. Espinoza, C. Gantz, A. Himes, A. Rodstrom, R. Shuren, R. Stonex, T. Volk, J. Zerpa, Bioenergy Res. 2021, 14, 543–560. DOI: https://doi.org/10.1007/s12155-020-10164-1
- 59 D. Yemshanov, D. McKenney, Biomass Bioenergy 2008, 32, 185–197. DOI: https://doi.org/10.1016/j.biombioe.2007.09.010
- 60 A. Shooshtarian, J. A. Anderson, G. W. Armstrong, M. K. M. Luckert, Biomass Bioenergy 2018, 113, 45–54. DOI: https://doi.org/10.1016/j.biombioe.2018.02.020
- 61 S. Brethauer, M. H. Studer, Chimia 2015, 69, 572–581. DOI: https://doi.org/10.2533/chimia.2015.572
- 62 B. Ruiz, X. Flotats, Waste Manage. 2014, 34, 2063–2079. DOI: https://doi.org/10.1016/j.wasman.2014.06.026
- 63 T. R. Sarker, R. Azargohar, A. K. Dalai, M. Venkatesh, Energy Fuels 2020, 34, 14169–14181. DOI: https://doi.org/10.1021/acs.energyfuels.0c02121
- 64 T. R. Sarker, S. Nanda, A. K. Dalai, V. Meda, BioEnergy Res. 2021, 14, 645–669. DOI: https://doi.org/10.1007/s12155-020-10236-2
- 65 E. Borén, L. Pommer, A. Nordin, S. H. Larsson, Fuel Process. Technol. 2020, 202, 106380. DOI: https://doi.org/10.1016/j.fuproc.2020.106380
- 66 J. L. Zheng, W. M. Yi, N. N. Wang, Energy Convers. Manage. 2008, 49, 1724–1730. DOI: https://doi.org/10.1016/j.enconman.2007.11.005
- 67 J. A. de M. Carneiro-Junior, G. F. de Oliveira, C. T. Alves, H. M. C. Andrade, S. A. Beisl Vieira de Melo, E. A. Torres, Energies 2021, 14, 3465. DOI: https://doi.org/10.3390/en14123465
- 68 W. A. Oyebode, H. O. Ogunsuyi, Curr. Res. Green Sustainable Chem. 2021, 4, 100115. DOI: https://doi.org/10.1016/j.crgsc.2021.100115
- 69 M. Chai, L. Xie, X. Yu, X. Zhang, Y. Yang, M. M. Rahman, P. H. Blanco, R. Liu, A. V. Bridgwater, J. Cai, Renewable Sustainable Energy Rev. 2021, 143, 110962. DOI: https://doi.org/10.1016/j.rser.2021.110962
- 70 H. K. Reddy, T. Muppaneni, S. Ponnusamy, N. Sudasinghe, A. Pegallapati, T. Selvaratnam, M. Seger, B. Dungan, N. Nirmalakhandan, T. Schaub, F. O. Holguin, P. Lammers, W. Voorhies, S. Deng, Appl. Energy 2016, 165, 943–951. DOI: https://doi.org/10.1016/j.apenergy.2015.11.067
- 71 J. A. Okolie, S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Renew. Sustain. Energy Rev. 2020, 119, 109546. DOI: https://doi.org/10.1016/j.rser.2019.109546
- 72 D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, S. B. Jones, Bioresour. Technol. 2015, 178, 147–156. DOI: https://doi.org/10.1016/j.biortech.2014.09.132
- 73 S. M. Heilmann, L. R. Jader, L. A. Harned, M. J. Sadowsky, F. J. Schendel, P. A. Lefebvre, M. G. von Keitz, K. J. Valentas, Appl. Energy 2011, 88, 3286–3290. DOI: https://doi.org/10.1016/j.apenergy.2010.12.041
- 74 S. Masoumi, P. E. Boahene, A. K. Dalai, Energy 2021, 217, 119344. DOI: https://doi.org/10.1016/j.energy.2020.119344
- 75 X. Zhou, J. Zhao, M. Chen, G. Zhao, S. Wu, Bioresour. Technol. 2021, 126354. DOI: https://doi.org/10.1016/j.biortech.2021.126354
- 76 B. Biswas, A. Kumar, R. Kaur, B. B. Krishna, T. Bhaskar, Bioresour. Technol. 2021, 337, 125439. DOI: https://doi.org/10.1016/j.biortech.2021.125439
- 77 B. R. Patra, S. Nanda, A. K. Dalai, V. Meda, Chemosphere 2021, 285, 131431. DOI: https://doi.org/10.1016/J.CHEMOSPHERE.2021.131431
- 78 S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Waste Biomass Valor. 2016, 7, 201–235. DOI: https://doi.org/10.1007/s12649-015-9459-z
- 79 A. Mamaeva, A. Tahmasebi, L. Tian, J. Yu, Bioresour. Technol. 2016, 211, 382–389. DOI: https://doi.org/10.1016/j.biortech.2016.03.120
- 80 T. Dickerson, J. Soria, Energies 2013, 6, 514–538. DOI: https://doi.org/10.3390/en6010514
- 81 X. Ren, H. Cai, Q. Zhang, D. Zhang, X. Lin, Energy 2021, 214, 118799. DOI: https://doi.org/10.1016/j.energy.2020.118799
- 82
T. K. Dada, M. Sheehan, S. Murugavelh, E. Antunes, Biomass Convers. Bioref. in press. DOI: https://doi.org/10.1007/s13399-021-01391-3
10.1007/s13399?021?01391?3 Google Scholar
- 83 R. Kumar, V. Strezov, E. Lovell, T. Kan, H. Weldekidan, J. He, S. Jahan, B. Dastjerdi, J. Scott, J. Anal. Appl. Pyrolysis 2019, 140, 148–160. DOI: https://doi.org/10.1016/j.jaap.2019.03.008
- 84 L. Busetto, D. Fabbri, R. Mazzoni, M. Salmi, C. Torri, V. Zanotti, Fuel 2011, 90, 1197–1207. DOI: https://doi.org/10.1016/j.fuel.2010.10.036
- 85 J. Wang, Q. Liu, J. Zhou, Z. Yu, Waste Biomass Valor. 2021, 12, 3049–3057. DOI: https://doi.org/10.1007/s12649-020-00962-1
- 86 P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen, A. D. Jensen, Appl. Catal., A 2011, 407, 1–19. DOI: https://doi.org/10.1016/j.apcata.2011.08.046
- 87 D. J. Mihalcik, C. A. Mullen, A. A. Boateng, J. Anal. Appl. Pyrolysis 2011, 92, 224–232. DOI: https://doi.org/10.1016/j.jaap.2011.06.001
- 88
V. S. Sikarwar, M. Zhao, Encycl. Sustainable Technol.
2017, 205–216. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10533-0
10.1016/B978?0?12?409548?9.10533?0 Google Scholar
- 89 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Energy Convers. Manage. 2020, 208, 112545. DOI: https://doi.org/10.1016/j.enconman.2020.112545
- 90 S. N. Reddy, N. Ding, S. Nanda, A. K. Dalai, J. A. Kozinski, Biofuels Bioprod. Bioref. 2014, 8, 728–737. DOI: https://doi.org/10.1002/bbb.1514
- 91 T. G. Madenoglu, S. Kurt, M. Saglam, M. Yüksel, D. Gökkaya, L. Ballice, J. Supercrit. Fluids 2012, 67, 22–28. DOI: https://doi.org/10.1016/j.supflu.2012.02.031
- 92 B. Ibrahimoglu, A. Cucen, M. Z. Yilmazoglu, Int. J. Hydrogen Energy 2017, 42, 2583–2591. DOI: https://doi.org/10.1016/j.ijhydene.2016.06.224
- 93 M. Hlina, M. Hrabovsky, T. Kavka, M. Konrad, Waste Manage. 2014, 34, 63–66. DOI: https://doi.org/10.1016/j.wasman.2013.09.018
- 94 B. Lemmens, H. Elslander, I. Vanderreydt, K. Peys, L. Diels, M. Oosterlinck, M. Joos, Waste Manage. 2007, 27, 1562–1569. DOI: https://doi.org/10.1016/j.wasman.2006.07.027
- 95
J. S. Brar, K. Singh, J. Wang, S. Kumar, Int. J. For. Res.
2012, 2012, 363058. DOI: https://doi.org/10.1155/2012/363058
10.1155/2012/363058 Google Scholar
- 96 S. Singh, R. Kumar, H. D. Setiabudi, S. Nanda, D. V. N. Vo, Appl. Catal., A 2018, 559, 57–74. DOI: https://doi.org/10.1016/j.apcata.2018.04.015
- 97 G. Guan, M. Kaewpanha, X. Hao, A. Abudula, Renewable Sustainable Energy Rev. 2016, 58, 450–461. DOI: https://doi.org/10.1016/j.rser.2015.12.316
- 98 B. Zeng, N. Shimizu, Energies 2021, 14, 3793. DOI: https://doi.org/10.3390/en14133793
- 99
S. Valizadeh, S.-H. Jang, G. H. Rhee, J. Lee, P. L. Show, M. A. Khan, B.-H. Jeon, K.-Y. A. Lin, C. H. Ko, W.-H. Chen, Y. K. Park, Chem. Eng. J.
2021, 133793. DOI: https://doi.org/10.1016/J.CEJ.2021.133793
10.1016/J.CEJ.2021.133793 Google Scholar
- 100 L. C. M. Ruivo, D. T. Pio, A. A. Yaremchenko, L. A. C. Tarelho, J. R. Frade, E. Kantarelis, K. Engvall, Fuel 2021, 300, 120859. DOI: https://doi.org/10.1016/j.fuel.2021.120859