Polysulfide Synthesis Using Waste Cooking Palm Oil via Inverse Vulcanization
Abdullah Nayeem
Universiti Malaysia Pahang, College of Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorMohd Faizal Ali
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorCorresponding Author
Jun Haslinda Shariffuddin
Universiti Malaysia Pahang, College of Engineering, 26300 Gambang, Kuantan, Malaysia
Correspondence: Jun Haslinda Shariffuddin ([email protected]), College of Engineering, Universiti Malaysia Pahang, Kuantan, Gambang, 26300, Malaysia.Search for more papers by this authorAbdullah Nayeem
Universiti Malaysia Pahang, College of Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorMohd Faizal Ali
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorCorresponding Author
Jun Haslinda Shariffuddin
Universiti Malaysia Pahang, College of Engineering, 26300 Gambang, Kuantan, Malaysia
Correspondence: Jun Haslinda Shariffuddin ([email protected]), College of Engineering, Universiti Malaysia Pahang, Kuantan, Gambang, 26300, Malaysia.Search for more papers by this authorAbstract
Elemental sulfur and waste cooking palm oil (WCO) are abundant industrial by-products from petrochemical and food processing industries, respectively. WCO was used as a crosslinker to prepare a high-sulfur-content polymer through inverse vulcanization. Polysulfides were generated under vigorous stirring of WCO with elemental sulfur at different temperatures, crosslinking ratios, and reaction times. The physicochemical properties of the produced polysulfides were determined and the thermal stability was analyzed. The FTIR spectra including the breakdown of C=C and formation of C–S bond confirmed the change of functional groups between WCO and produced polymer. The effect of saturated and unsaturated triglycerides of WCO is clearly visible in SEM micrographs. The polysulfide with a 70 wt % sulfur feed ratio showed excellent morphological and thermal properties.
Supporting Information
Filename | Description |
---|---|
ceat202100465-sup-0001-misc_information.pdf535 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Y. Zhang, R. S. Glass, K. Char, J. Pyun, Polym. Chem. 2019, 10 (30), 4078–4105. DOI: https://doi.org/10.1039/c9py00636b
- 2 W. J. Chung, Nat. Chem. 2013, 5 (6), 518–524. DOI: https://doi.org/10.1038/nchem.1624
- 3 A. Hoefling, Y. J. Lee, P. Theato, Macromol. Chem. Phys. 2017, 218 (1), 1600303. DOI: https://doi.org/10.1002/macp.201600303
- 4 S. Choudhury, Sustainable Energy Fuels 2018, 2 (1), 133–146. DOI: https://doi.org/10.1039/c7se00452d
- 5 A. Hoefling, D. T. Nguyen, Y. J. Lee, S. W. Song, P. Theato, Mater. Chem. Front. 2017, 1 (9), 1818–1822. DOI: https://doi.org/10.1039/c7qm00083a
- 6 D. J. Parker, S. T. Chong, T. Hasell, RSC Adv. 2018, 8 (49), 27892–27899. DOI: https://doi.org/10.1039/c8ra04446e
- 7 N. A. Lundquist, J. M. Chalker, Sustainable Mater. Technol. 2020, 26, e00222. DOI: https://doi.org/10.1016/j.susmat.2020.e00222
- 8 Z. Ren, X. Jiang, L. Liu, C. Yin, S. Wang, X. Yang, J. Mol. Liq. 2021, 328, 115437. DOI: https://doi.org/10.1016/j.molliq.2021.115437
- 9 M. Mann, Org. Biomol. Chem. 2019, 17 (7), 1929–1936. DOI: https://doi.org/10.1039/c8ob02130a
- 10 S. F. Valle, A. S. Giroto, R. Klaic, G. G. F. Guimarães, C. Ribeiro, Polym. Degrad. Stab. 2019, 162, 102–105. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.02.011
- 11 M. J. H. Worthington, Adv. Sustainable Syst. 2018, 2 (6), 1800024. DOI: https://doi.org/10.1002/adsu.201800024
- 12 L. E. Anderson, ACS Macro Lett. 2017, 6 (5), 500–504. DOI: https://doi.org/10.1021/acsmacrolett.7b00225
- 13 D. A. Boyd, ACS Macro Lett. 2019, 8 (2), 113–116. DOI: https://doi.org/10.1021/acsmacrolett.8b00923
- 14 A. D. Smith, T. Thiounn, E. W. Lyles, E. K. Kibler, R. C. Smith, A. G. Tennyson, J. Polym. Sci., Part A: Polym. Chem. 2019, 57 (15), 1704–1710. DOI: https://doi.org/10.1002/pola.29436
- 15 M. Arslan, B. Kiskan, Y. Yagci, Sci. Rep. 2017, 7 (1), 5207. DOI: https://doi.org/10.1038/s41598-017-05608-2
- 16 H. K. Lin, Y. L. Liu, Macromol. Rapid Commun. 2017, 38 (10), 1700051. DOI: https://doi.org/10.1002/marc.201700051
- 17 C. Herrera, K. J. Ysinga, C. L. Jenkins, ACS Appl. Mater. Interfaces 2019, 11 (38), 35312–35318. DOI: https://doi.org/10.1021/acsami.9b11204
- 18 S. Z. Khawaja, S. Vijay Kumar, K. K. Jena, S. M. Alhassan, Mater. Lett. 2017, 203, 58–61. DOI: https://doi.org/10.1016/j.matlet.2017.05.133
- 19 V. K. Shankarayya Wadi, ACS Omega 2018, 3 (3), 3330–3339. DOI: https://doi.org/10.1021/acsomega.8b00031
- 20 M. P. Crockett, Angew. Chem., Int. Ed. 2016, 55 (5), 1714–1718. DOI: https://doi.org/10.1002/anie.201508708
- 21 M. Mann, Chem. Commun. 2021, 57 (51), 6296–6299. DOI: https://doi.org/10.1039/d1cc01555a
- 22 N. A. Lundquist, RSC Adv. 2018, 8 (3), 1232–1236. DOI: https://doi.org/10.1039/c7ra11999b
- 23 N. A. Lundquist, Chem. – Eur. J. 2020, 26 (44), 10035–10044. DOI: https://doi.org/10.1002/chem.202001841
- 24 A. D. Tikoalu, N. A. Lundquist, J. M. Chalker, Adv. Sustainable Syst. 2020, 4 (3), 1900111. DOI: https://doi.org/10.1002/adsu.201900111
- 25 B. Zhang, L. J. Dodd, P. Yan, T. Hasell, React. Funct. Polym. 2021, 161 (2), 104865. DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.104865
- 26
A. Nayeem, M. F. Ali, J. H. Shariffuddin, Mater. Today Proc., in press. DOI: https://doi.org/10.1016/J.MATPR.2021.09.397
10.1016/J.MATPR.2021.09.397 Google Scholar
- 27www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (Accessed on August 12, 2021)
- 28
N. A. Zaharudin, R. Rashid, S. M. M. Esivan, N. Othman, A. Idris, J. Teknol.
2016, 78 (6), 85–99. DOI: https://doi.org/10.11113/JT.V78.9237
10.11113/JT.V78.9237 Google Scholar
- 29
S. A. Kadapure, Int. J. Sustainable Eng.
2017, 11 (3), 167–172. DOI: https://doi.org/10.1080/19397038.2017.1420107
10.1080/19397038.2017.1420107 Google Scholar
- 30 R. Marchetti, C. Vasmara, L. Bertin, F. Fiume, Appl. Microbiol. Biotechnol. 2020, 104 (7), 2833–2856. DOI: https://doi.org/10.1007/S00253-020-10431-3
- 31 R. P. Jaya, E3S Web Conf. 2018, 65 (11), 02002. DOI: https://doi.org/10.1051/E3SCONF/20186502002
- 32 D. C. Panadare, V. K. Rathod, Iran. J. Chem. Eng. 2015, 12 (3), 55–76.
- 33 H. Sanaguano-Salguero, A. Tigre-Leon, I. Bayas-Morejon, Int. J. Ecol. Dev. 2018, 33 (1), 19–27.
- 34 N. H. M. B. Hisham, M. F. Ibrahim, N. Ramli, S. Abd-Aziz, Molecules 2019, 24 (14), 2617. DOI: https://doi.org/10.3390/MOLECULES24142617
- 35
A. Abbasi, M. M. Nasef, W. Z. N. Yahya, M. Moniruzzaman, A. S. Ghumman, Polym. Polym. Compos.
2020, 29 (8), 1179–1190. DOI: https://doi.org/10.1177/0967391120959536
10.1177/0967391120959536 Google Scholar
- 36
A. Abbasi, M. M. Nasef, W. Z. N. Yahya, Sustainable Chem. Pharm.
2019, 13 (3), 100158. DOI: https://doi.org/10.1016/j.scp.2019.100158
10.1016/j.scp.2019.100158 Google Scholar
- 37
J. Pyun, R. S. Glass, M. M. Mackay, R. Norwood, in Main Group Strategies towards Functional Hybrid Materials (Eds: T. Baumgartner, F. Jäkle), 1st ed., John Wiley & Sons, Chichester
2018, 433–450.
10.1002/9781119235941.ch17 Google Scholar
- 38 T. B. Nguyen, Adv. Synth. Catal. 2017, 359 (7), 1066–1130. DOI: https://doi.org/10.1002/adsc.201601329
- 39
A. Abbasi, W. Z. N. Yahya, M. M. Nasef, Green Mater.
2020, 8 (4), 172–180. DOI: https://doi.org/10.1680/jgrma.19.00053
10.1680/jgrma.19.00053 Google Scholar
- 40 Z. Ullah, M. A. Bustam, Z. Man, Int. J. Chem. Eng. Appl. 2014, 5 (2), 134–137. DOI: https://doi.org/10.7763/ijcea.2014.v5.366
- 41 S. Zhu, A. Hamielec, in Polymer Science: A Comprehensive Reference, Vol. 4, Elsevier, Amsterdam 2012, 779–831. DOI: https://doi.org/10.1016/B978-0-444-53349-4.00127-8