Maximizing Propylene Separation from Propane by Extractive Distillation with Aqueous N-Methyl-2-pyrrolidone as Separating Agent
Jesús Alonso Cruz Valdez
Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Departamento de Ingeniería Química, Antonio García Cubas Pte #600 esq. Av. Tecnológico, 38010 Celaya, Guanajuato, Mexico
Search for more papers by this authorAdriana Avilés Martínez
Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, Centro, 58000 Morelia, Mich, Mexico
Search for more papers by this authorJavier Vallejo Montesinos
Universidad de Guanajuato, Departamento de Química, 36050 Noria Alta s/n, Guanajuato, Gto., Mexico
Search for more papers by this authorCorresponding Author
Elías Pérez
UASLP, Instituto de Física, Álvaro Obregón 64, 78000 SLP, San Luis Potosí, Mexico
Correspondence: Elías Pérez ([email protected]), Instituto de Física, UASLP, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico; Rosalba Patiño-Herrera ([email protected]), Departamento de Ingeniería Química, Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Guanajuato 38010, Mexico.Search for more papers by this authorCorresponding Author
Rosalba Patiño-Herrera
Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Departamento de Ingeniería Química, Antonio García Cubas Pte #600 esq. Av. Tecnológico, 38010 Celaya, Guanajuato, Mexico
Correspondence: Elías Pérez ([email protected]), Instituto de Física, UASLP, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico; Rosalba Patiño-Herrera ([email protected]), Departamento de Ingeniería Química, Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Guanajuato 38010, Mexico.Search for more papers by this authorJesús Alonso Cruz Valdez
Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Departamento de Ingeniería Química, Antonio García Cubas Pte #600 esq. Av. Tecnológico, 38010 Celaya, Guanajuato, Mexico
Search for more papers by this authorAdriana Avilés Martínez
Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, Centro, 58000 Morelia, Mich, Mexico
Search for more papers by this authorJavier Vallejo Montesinos
Universidad de Guanajuato, Departamento de Química, 36050 Noria Alta s/n, Guanajuato, Gto., Mexico
Search for more papers by this authorCorresponding Author
Elías Pérez
UASLP, Instituto de Física, Álvaro Obregón 64, 78000 SLP, San Luis Potosí, Mexico
Correspondence: Elías Pérez ([email protected]), Instituto de Física, UASLP, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico; Rosalba Patiño-Herrera ([email protected]), Departamento de Ingeniería Química, Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Guanajuato 38010, Mexico.Search for more papers by this authorCorresponding Author
Rosalba Patiño-Herrera
Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Departamento de Ingeniería Química, Antonio García Cubas Pte #600 esq. Av. Tecnológico, 38010 Celaya, Guanajuato, Mexico
Correspondence: Elías Pérez ([email protected]), Instituto de Física, UASLP, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico; Rosalba Patiño-Herrera ([email protected]), Departamento de Ingeniería Química, Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Guanajuato 38010, Mexico.Search for more papers by this authorAbstract
The separation of polymer-grade propylene from a propylene-propane mixture was performed by an extractive distillation (ED) process in the steady state, and was developed on the Aspen Plus V9 simulator, by using an extractive column and a recovery column. To increase the volatility and relative selectivity of propylene, aqueous N-methyl-2-pyrrolidone (NMP) was used as extracting agent. By using an ED process and aqueous NMP, compared with the high-pressure binary distillation process, a reduction in energy consumption was obtained, with a saving of 52 % in total annual cost.
References
- 1 S. Liang, Y. Cao, X. Liu, X. Li, Y. Zhao, Y. Wang, Y. Wang, Chem. Eng. Res. Des. 2017, 117, 318–335. DOI: https://doi.org/10.1016/j.cherd.2016.10.040
- 2 A. M. Umo, E. N. Bassey, Int. J. Chem. Eng. Appl. 2017, 8 (1), 1–4. DOI: https://doi.org/10.18178/ijcea.2017.8.1.621
- 3 Y. Huaqing, L. Guanghui, X. Yong, 2013. CN 104058920A
- 4 Z. Ma, D. Yao, J. Zhao, H. Li, Z. Chen, P. Cui, Z. Zhu, L. Wang, Y. Wang, Y. Ma, J. Gao, Process Saf. Environ. Prot. 2021, 148, 462–472. DOI: https://doi.org/10.1016/j.psep.2020.10.033
- 5 P. Cui, F. Zhao, D. Yao, Z. Ma, S. Li, X. Li, L. Wang, Z. Zhu, Y. Wang, Y. Ma, D. Xu, Ind. Eng. Chem. Res. 2020, 59 (29), 13204–13219. DOI: https://doi.org/10.1021/acs.iecr.0c02225
- 6 J. Qi, Y. Li, J. Xue, R. Qiao, Z. Zhang, Q. Li, Sep. Purif. Technol. 2020, 238, 116487. DOI: https://doi.org/10.1016/j.seppur.2019.116487
- 7 Q. Pan, X. Shang, S. Ma, J. Li, Y. Song, M. Sun, J. Liu, L. Sun, Sep. Purif. Technol. 2020, 236, 116290. DOI: https://doi.org/10.1016/j.seppur.2019.116290
- 8 H. Luo, C. Sorin Bildea, A. A. Kiss, Ind. Eng. Chem. Res. 2015, 54 (7), 2208–2213. DOI: https://doi.org/10.1021/ie504459c
- 9 G. Modla, P. Lang, Ind. Eng. Chem. Res. 2012, 51 (35), 11473–11481. DOI: https://doi.org/10.1021/ie300331d
- 10 J. Holtbruegge, M. Wierschem, S. Steinruecken, D. Voss, L. Parhomenko, P. Lutze, Sep. Purif. Technol. 2013, 118, 862–878. DOI: https://doi.org/10.1016/j.seppur.2013.08.025
- 11 H. K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller, J. Gmehling, Ind. Eng. Chem. Res. 1991, 30 (10), 2352–2355. DOI: https://doi.org/10.1021/ie00058a017
- 12 J. R. Alcántara-Avila, F. I. Gómez-Castro, J. G. Segovia-Hernández, K. I. Sotowa, T. Horikawa, Chem. Eng. Process. Process Intensif. 2014, 82, 112–122. DOI: https://doi.org/10.1016/j.cep.2014.06.006
- 13 A. Kazemi, Chem. Eng. Process. Process Intensif. 2018, 123, 158–167. DOI: https://doi.org/10.1016/j.cep.2017.10.027
- 14 M. Gehre, Z. Guo, G. Rothenberg, S. Tanase, ChemSusChem 2015, 10, 3949–3963. DOI: https://doi.org/10.1002/cssc.201700657
- 15 B. Liao, Z. Lei, Z. Xu, R. Zhou, Z. Duan, Chem. Eng. J. 2001, 84, 581–586. DOI: https://doi.org/10.1016/S1385-8947(01)00175-9
- 16 X. Yang, H. Song, Chem. Eng. Technol. 2006, 29 (1), 33–43. DOI: https://doi.org/10.1002/ceat.200500270
- 17 B. Chen, Z. Lei, J. Li, J. Chem. Eng. Jpn. 2003, 36 (1), 20–24. DOI: https://doi.org/10.1252/jcej.36.20
- 18 A. Fredenslund, R. L. Jones, J. M. Prausnitz, AIChE J. 1975, 21 (6), 1086–1099. DOI: https://doi.org/10.1002/aic.690210607
- 19 P. A. Gómez, I. D. Gil, Lat. Am. Appl. Res. 2009, 39, 275–284.
- 20 J. Seader, E. Henley, D. Roper, Separation Process Principles, 3rd ed., John Wiley & Sons, Hoboken 2010.
- 21 M. Van Winkle, Distillation, McGraw-Hill, New York 1977.
- 22 B. Chen, Z. Lei, AIChE J. 2005, 51 (12), 3114–3121. DOI: https://doi.org/10.1002/aic.10562
- 23
J. Park, K. Kim, J.-W. Shin, Y.-K. Park, Chem. Eng. Trans.
2019, 74, 871–876. DOI: https://doi.org/10.3303/CET1974146
10.3303/CET1974146 Google Scholar
- 24 S. U. Rege, R. T. Yang, Chem. Eng. Sci. 2002, 57 (7), 1139–1149.
- 25 E. S. Glatzer, Propylene Technology: The Next Generation, Nexant Inc., 2008. www.nexant.com
- 26
L. Sun, K. He, Y. Liu, Q. Wang, D. Wang, Open Chem. Eng. J.
2014, 8 (1), 12–18. DOI: https://doi.org/10.2174/1874123101408010012
10.2174/1874123101408010012 Google Scholar
- 27 J. A. Delgado Dobladez, V. I. Águeda Maté, S. A. Torrellas, M. Larriba, Comput. Chem. Eng. 2020, 136, 106717. DOI: https://doi.org/10.1016/j.compchemeng.2019.106717
- 28 K. D. Brito, G. M. Cordeiro, M. F. Figueirêdo, L. G. S. Vasconcelos, R. P. Brito, Comput. Chem. Eng. 2016, 93, 185–196. DOI: https://doi.org/10.1016/j.compchemeng.2016.06.013
- 29 S. O. Momoh, Sep. Sci. Technol. 1991, 26 (5), 729–742. DOI: https://doi.org/10.1080/01496399108049911