Analysis of Hydrocyclone Geometry via Rapid Optimization Based on Computational Fluid Dynamics
Lin Liu
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
Search for more papers by this authorCorresponding Author
Lixin Zhao
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Correspondence: Lixin Zhao ([email protected], [email protected]), Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, P. R. China.Search for more papers by this authorSamuel Reifsnyder
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
University of California, Water-Energy Nexus Center, CA 92697-2175 Irvine, USA
Search for more papers by this authorSheng Gao
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorMinzheng Jiang
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorXueqiang Huang
Wuhan Chutian Jialian Technology Co., Ltd., 430223 Wuhan, Hubei, P. R. China
Search for more papers by this authorMinghu Jiang
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorYang Liu
Northeast Petroleum University, School of Petroleum Engineering, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorDiego Rosso
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
University of California, Water-Energy Nexus Center, CA 92697-2175 Irvine, USA
Search for more papers by this authorLin Liu
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
Search for more papers by this authorCorresponding Author
Lixin Zhao
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Correspondence: Lixin Zhao ([email protected], [email protected]), Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, P. R. China.Search for more papers by this authorSamuel Reifsnyder
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
University of California, Water-Energy Nexus Center, CA 92697-2175 Irvine, USA
Search for more papers by this authorSheng Gao
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorMinzheng Jiang
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorXueqiang Huang
Wuhan Chutian Jialian Technology Co., Ltd., 430223 Wuhan, Hubei, P. R. China
Search for more papers by this authorMinghu Jiang
Northeast Petroleum University, School of Mechanical Science and Engineering, 163318 Daqing, Heilongjiang, P. R. China
Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorYang Liu
Northeast Petroleum University, School of Petroleum Engineering, 163318 Daqing, Heilongjiang, P. R. China
Search for more papers by this authorDiego Rosso
University of California, Department of Civil & Environmental Engineering, CA 92697-2175 Irvine, USA
University of California, Water-Energy Nexus Center, CA 92697-2175 Irvine, USA
Search for more papers by this authorAbstract
Hydrocyclones exploit density gradients for the centrifugal separation of dispersions in a continuous liquid. Selection of the geometrics for optimal separation is case specific, like the media characteristics. The existing optimization method based on computational fluid dynamics (CFD) provides a powerful analytical tool but requires long computational times. The most common praxis for CFD optimization is via the single-factor optimization method (SFOM). In this study, a novel approach is presented as an improved rapid optimization method that implements a dynamic-mesh and user-defined function optimization method (DUOM). The DUOM adapts the dynamic-mesh approach from other applications to the optimization analysis of hydrocyclones. The DUOM reduced the computational time by 31.1 %, compared to the SFOM.
Supporting Information
Filename | Description |
---|---|
ceat202100121-sup-0001-misc_information.pdf401.7 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 L. Abdollahzadeh, M. S. Mazraeno, S. N. Hosseini, Chem. Eng. Technol. 2021, 44, 23–30. DOI: https://doi.org/10.1002/ceat.202000130
- 2 L. Zhao, Y. Li, B. Xu, M. Jiang, Chem. Eng. Technol. 2015, 38, 2146–2152. DOI: https://doi.org/10.1002/ceat.201500093
- 3 L. Chu, W. Chen, X. Lee, Sep. Purif. Technol. 2000, 21, 71–86. DOI: https://doi.org/10.1016/S1383-5866(00)00192-1
- 4 T. R. Vakamalla, N. Mangadoddy, Sep. Purif. Technol. 2017, 176, 23–39. DOI: https://doi.org/10.1016/j.seppur.2016.11.049
- 5 M. Narasimha, A. N. Mainza, P. N. Holtham, M. S. Powell, M. S. Brennan, Int. J. Miner. Process. 2014, 133, 1–12. DOI: https://doi.org/10.1016/j.minpro.2014.08.006
- 6 S. M. Gonçalves, M. A. S. Barrozo, L. G. M. Vieira, Chem. Eng. Technol. 2017, 40, 1750–1757. DOI: https://doi.org/10.1002/ceat.201600496
- 7 A. V. Krokhina, V. A. Lvov, G. P. Pavlikhin, Chem. Eng. Technol. 2017, 40, 967–972. DOI: https://doi.org/10.1002/ceat.201600602
- 8 K. Chu, J. Chen, A. Yu, R. A. Williams, Powder Technol. 2017, 314, 532–541. DOI: https://doi.org/10.1016/j.powtec.2016.10.047
- 9 J. L. Mognon, J. M. da Silva, I. C. Bicalho, C. H. Ataíde, C. R. Duarte, J. Pet. Sci. Eng. 2015, 129, 145–152. DOI: https://doi.org/10.1016/j.petrol.2015.02.037
- 10 M. P. Burt, P. R. Thomas, J. Clean. Prod. 2002, 10, 573–579. DOI: https://doi.org/10.1016/S0959-6526(01)00055-5
- 11 J. Bayo, J. López-Castellanos, R. Martínez-García, A. Alcolea, C. Lardín, J. Clean. Prod. 2015, 87, 550–557. DOI: https://doi.org/10.1016/j.jclepro.2014.10.064
- 12 J. Yu, J. Fu, H. Cheng, Z. Cui, Waste Manag. 2017, 61, 362–371. DOI: https://doi.org/10.1016/j.wasman.2016.12.014
- 13 H. Yurdem, V. Demir, A. Degirmencioglu, Biosyst. Eng. 2010, 105, 495–506. DOI: https://doi.org/10.1016/j.biosystemseng.2010.02.001
- 14 J. Lee, Aquacult. Eng. 2014, 63, 32–38. DOI: https://doi.org/10.1016/j.aquaeng.2014.07.002
- 15 S. Emami, L. G. Tabil, R. T. Tyler, W. J. Crerar, J. Food Eng. 2007, 82, 460–465. DOI: https://doi.org/10.1016/j.jfoodeng.2007.03.002
- 16 M. S. Romero-Güiza, M. Peces, S. Astals, J. Benavent, J. Valls, J. Mata-Alvarez, Appl. Energy 2014, 135, 63–70. DOI: https://doi.org/10.1016/j.apenergy.2014.08.077
- 17 P. Fan, H. Peng, M. Fan, Sep. Sci. Technol. 2016, 51, 1913–1923. DOI: https://doi.org/10.1080/01496395.2016.1178291
- 18 T. Neesse, J. Dueck, H. Schwemmer, M. Farghaly, Miner. Eng. 2015, 71, 85–88. DOI: https://doi.org/10.1016/j.mineng.2014.10.017
- 19 L. Ni, J. Tian, J. Zhao, Appl. Therm. Eng. 2016, 103, 695–704. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.017
- 20 P. Fu, F. Wang, X. Yang, L. Ma, X. Cui, H. Wang, Environ. Sci. Technol. 2017, 51, 1587–1594. DOI: https://doi.org/10.1021/acs.est.6b04418
- 21 L. F. Martínez, A. G. Lavín, M. M. Mahamud, J. L. Bueno, Chem. Eng. Process. 2008, 47, 192–199. DOI: https://doi.org/10.1016/j.cep.2007.03.003
- 22 J. C. Cullivan, R. A. Williams, T. Dyakowski, C. R. Cross, Miner. Eng. 2004, 17, 651–660. DOI: https://doi.org/10.1016/j.mineng.2004.04.009
- 23 L. G. M. Vieira, J. J. R. Damasceno, M. A. S. Barrozo, Chem. Eng. Process. 2010, 49, 460–467. DOI: https://doi.org/10.1016/j.cep.2010.03.011
- 24 L. Zhao, M. Jiang, B. Xu, B. Zhu, Chem. Eng. Res. Des. 2012, 90, 2129–2134. DOI: https://doi.org/10.1016/j.cherd.2012.05.013
- 25 T. R. Vakamalla, V. B. R. Koruprolu, R. Arugonda, N. Mangadoddy, Sep. Purif. Technol. 2017, 175, 481–497. DOI: https://doi.org/10.1016/j.seppur.2016.10.026
- 26 B. Wang, A. Yu, Chem. Eng. J. 2008, 135, 33–42. DOI: https://doi.org/10.1016/J.CEJ.2007.04.009
- 27
C. G. Popovici, Energy Procedia
2017, 112, 360–365. DOI: https://doi.org/10.1016/j.egypro.2017.03.1067
10.1016/j.egypro.2017.03.1067 Google Scholar
- 28 A. Eltayeb, S. Tan, Z. Qi, A. A. Ala, N. M. Ahmed, Ann. Nucl. Energy 2019, 128, 190–202. DOI: https://doi.org/10.1016/j.anucene.2018.12.051
- 29 J. L. Kang, Y. C. Ciou, D. Y. Lin, D. S. H. Wong, S. S. Jang, Chem. Eng. Res. Des. 2019, 147, 43–54. DOI: https://doi.org/10.1016/j.cherd.2019.04.037
- 30 Y. Liu, Optimization Theories and Methodologies for Large-Scale Oil and Gas Network Systems, Science Press, Beijing 2019.
- 31 M. Ghodrat, S. B. Kuang, A. B. Yu, A. Vince, G. D. Barnett, P. J. Barnett, Miner. Eng. 2014, 62, 74–84. DOI: https://doi.org/10.1016/j.mineng.2013.12.003
- 32 K. J. Hwang, Y. W. Hwang, H. Yoshida, K. Shigemori, Powder Technol. 2012, 232, 41–48. DOI: https://doi.org/10.1016/j.powtec.2012.07.059
- 33 Q. Yang, H. Wang, J. Wang, Z. Li, Y. Liu, Sep. Purif. Technol. 2011, 79, 310–320. DOI: https://doi.org/10.1016/j.seppur.2011.03.012
- 34 J. Tian, L. Ni, J. Zhao, J. Chem. Eng. Chin. Univ. 2017, 31, 31–37. DOI: https://doi.org/10.3969/j.issn.1003-9015.2017.01.005
- 35 D. Wang, G. Wang, S. Qiu, L. Zhong, S. Zhou, Q. Liu, Chin. J. Process Eng. 2019, 19, 982–988. DOI: https://doi.org/10.12034/j.issn.1009-606X.219105
- 36 K. Elsayed, C. Lacor, Comput. Fluids 2013, 71, 224–239. DOI: https://doi.org/10.1016/j.compfluid.2012.09.027
- 37 K.-J. Hwang, S.-P. Chou, Sep. Purif. Technol. 2017, 172, 76–84. DOI: https://doi.org/10.1016/j.seppur.2016.08.005
- 38 H. Razmi, A. Soltani Goharrizi, A. Mohebbi, Sep. Purif. Technol. 2019, 209, 851–862. DOI: https://doi.org/10.1016/j.seppur.2018.06.073
- 39 T. Song, J. Tian, L. Ni, C. Shen, Y. Yao, Energy 2018, 163, 490–500. DOI: https://doi.org/10.1016/j.energy.2018.07.166
- 40 J. Tian, L. Ni, T. Song, C. Shen, Y. Yao, J. Zhao, Sep. Purif. Technol. 2019, 215, 10–24. DOI: https://doi.org/10.1016/j.seppur.2018.12.081
- 41 J. J. Cilliers, S. T. L. Harrison, Sep. Purif. Technol. 2019, 209, 159–163. DOI: https://doi.org/10.1016/j.seppur.2018.06.019
- 42 A. Motin, A. Bénard, Chem. Eng. Res. Des. 2017, 122, 184–197. DOI: https://doi.org/10.1016/j.cherd.2017.04.012
- 43 L. Yang, B. Li, P. Hu, Proc. 2014 China Congr. Comput. Mech. 3rd Qian Lingxi Comput. Mech. Award 2014, 13, http://cpfd.cnki.com.cn/Article/cpfdtotal-aglu201408004137.htm
- 44
W. Zhao, L. Zhao, B. Xu, Y. Zhao, M. Jiang, Int. Pet. Technol. Conf.
2016, IPTC-18768-MS. DOI: https://doi.org/10.2523/iptc-18768-ms
10.2523/iptc?18768?ms Google Scholar
- 45 L. Zhang, H. Xiao, H. Zhang, L. Xu, D. Zhang, J. Pet. Sci. Eng. 2007, 59, 213–218. DOI: https://doi.org/10.1016/j.petrol.2007.04.002
- 46 P. Dixit, R. Tiwari, A. K. Mukherjee, P. K. Banerjee, Powder Technol. 2015, 275, 105–112. DOI: https://doi.org/10.1016/j.powtec.2015.01.068
- 47
M. Jiang, F. Tan, S. Jin, G. Long, G. Chen, B. Xu, Chem. Ind. Eng. Prog.
2016, 35, 2355–2361. DOI: https://doi.org/10.16085/j.issn.1000-6613.2016.08.08
10.16085/j.issn.1000?6613.2016.08.08 Google Scholar
- 48 K. P. Gertzos, P. G. Nikolakopoulos, C. A. Papadopoulos, Tribol. Int. 2008, 41, 1190–1204. DOI: https://doi.org/10.1016/j.triboint.2008.03.002
- 49
J. D. Shipman, S. Arunajatesan, P. A. Cavallo, N. Sinha, S. A. Polsky, Collect. Tech. Pap. – AIAA Appl. Aerodyn. Conf.
2008, 1–11. DOI: https://doi.org/10.2514/6.2008-6227
10.2514/6.2008?6227 Google Scholar
- 50
M. B. Açlkgöz, A. R. Aslan, J. Aerosp. Eng.
2016, 29 (6), 1–20. DOI: https://doi.org/10.1061/(asce)as.1943-5525.0000641
10.1061/(asce)as.1943?5525.0000641 Google Scholar
- 51 S. H. Rhee, E. Koutsavdis, Comput. Fluids 2005, 34, 1152–1172. DOI: https://doi.org/10.1016/j.compfluid.2004.09.005
- 52
J. Wu, Z. Kou, 7th Int. Symp. Instrum. Control Technol. Sensors Instruments, Comput. Simulation, Artif. Intell.
2008, 7127, 71271L. DOI: https://doi.org/10.1117/12.806358
10.1117/12.806358 Google Scholar
- 53
J. Remacle, J. Lambrechts, B. Seny, Int. J. Numer. Methods Eng.
2012, 1102–1119. DOI: https://doi.org/10.1002/nme
10.1002/nme Google Scholar
- 54 J. Zhong, Z. Xu, Int. J. Comput. Fluid Dyn. 2016, 30, 531–542. DOI: https://doi.org/10.1080/10618562.2016.1254201
- 55
J. Li, M. Zhang, J. Zhang, Appl. Mech. Mater.
2014, 574, 224–229. DOI: https://doi.org/10.4028/www.scientific.net/AMM.574.224
10.4028/www.scientific.net/AMM.574.224 Google Scholar
- 56 L. D. Halstrom, A. M. Schwing, S. K. Robinson, AIAA Aviat. Aeronaut. Forum Expo. 2016, 1–5.
- 57 K. Dumont, J. M. A. Stijnen, J. Vierendeels, F. N. van de Vosse, P. R. Verdonck, Comput. Methods Biomech. Biomed. Eng. 2004, 7, 139–146. DOI: https://doi.org/10.1080/10255840410001715222
- 58
D. Adkins, Y. Y. Yan, J. Bionic Eng.
2006, 3, 147–153. DOI: https://doi.org/10.1016/S1672-6529(06)60018-8
10.1016/S1672?6529(06)60018?8 Google Scholar
- 59
D. Qu, J. Lou, Z. Zhang, X. Tian, W. Xu, J. Nav. Univ. Eng.
2017, 29, 26–30. DOI: https://doi.org/10.7495/j.issn.1009-3486.2017.04.005
10.7495/j.issn.1009?3486.2017.04.005 Google Scholar
- 60 S. Kumar Sharma, V. Sharma, Int. J. Recent Adv. Mech. Eng. 2013, 2, 13–28.
- 61 C. L. Rumsey, S. M. Rivers, J. H. Morrison, Comput. Fluids 2005, 34, 785–816. DOI: https://doi.org/10.1016/j.compfluid.2004.07.003
- 62 J. Wang, G. H. Priestman, J. R. Tippetts, Int. J. Numer. Methods Heat Fluid Flow 2006, 16, 910–926. DOI: https://doi.org/10.1108/09615530610702069
- 63 S. A. Grady, G. D. Wesson, M. Abdullah, E. E. Kalu, Filtr. Sep. 2003, 40, 41–46. DOI: https://doi.org/10.1016/S0015-1882(03)00930-3
- 64 Z. Bai, H. Wang, Chem. Eng. Technol. 2006, 29, 1161–1166. DOI: https://doi.org/10.1002/ceat.200600102
- 65 R. A. Medronho, J. Schuetze, W. D. Deckwer, Lat. Am. Appl. Res. 2005, 35, 1–8.
- 66 S. Noroozi, S. H. Hashemabadi, Chem. Eng. Technol. 2009, 32, 1885–1893. DOI: https://doi.org/10.1002/ceat.200900129
- 67 L. Liu, L. Zhao, X. Yang, Y. Wang, B. Xu, B. Liang, Sep. Purif. Technol. 2019, 213, 389–400. DOI: https://doi.org/10.1016/j.seppur.2018.12.051
- 68 L. Ren, L. Zheng, G. Zhong, S. Wu, Pet. Sci. 2007, 4, 81–85. DOI: https://doi.org/10.1007/bf03186579
- 69 M. Azimian, H. J. Bart, Pet. Sci. 2016, 13, 304–319. DOI: https://doi.org/10.1007/s12182-016-0084-7
- 70 L. Huang, S. Deng, M. Chen, J. Guan, Chem. Eng. Sci. 2017, 172, 107–116. DOI: https://doi.org/10.1016/j.ces.2017.06.030
- 71 L. Huang, S. Deng, J. Guan, M. Chen, W. Hua, Chem. Eng. Res. Des. 2018, 130, 266–273. DOI: https://doi.org/10.1016/j.cherd.2017.12.030
- 72 S. Li, Z. Liu, Y. Chang, J. Li, J. Hu, Q. Shen, H. Wang, Sci. Total Environ. 2021, 752, 141887. DOI: https://doi.org/10.1016/j.scitotenv.2020.141887
- 73 M. Liu, J. Chen, X. Cai, Y. Han, S. Xiong, Chin. J. Chem. Eng. 2018, 26, 60–66. DOI: https://doi.org/10.1016/j.cjche.2017.06.021
- 74 D. Wang, B. Zhao, Y. Su, Chem. Eng. Technol. 2019, 42, 1960–1969. DOI: https://doi.org/10.1002/ceat.201800511
- 75 W. K. Evans, A. Suksangpanomrung, A. F. Nowakowski, Chem. Eng. J. 2008, 143, 51–61. DOI: https://doi.org/10.1016/j.cej.2007.12.023
- 76 L. Ni, J. Tian, T. Song, Y. Jong, J. Zhao, Sep. Purif. Rev. 2019, 48, 30–51. DOI: https://doi.org/10.1080/15422119.2017.1421558