Hydrodynamic Investigation on Deep Desulfurization of Liquid Fuel at the Microscale
Marwah Al-Azzawi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorAfzal Husain
Sultan Qaboos University, Department of Mechanical and Industrial Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorCorresponding Author
Farouk S. Mjalli
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Correspondence: Farouk S. Mjalli ([email protected]), Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman.Search for more papers by this authorTalal Al-Wahaibi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorAbdulaziz Al-Hashmi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorBasim Abu-Jdayil
United Arab Emirates University, Department of Chemical and Petroleum Engineering, P.O. Box 15551, Al Ain, United Arab Emirates
Search for more papers by this authorMarwah Al-Azzawi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorAfzal Husain
Sultan Qaboos University, Department of Mechanical and Industrial Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorCorresponding Author
Farouk S. Mjalli
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Correspondence: Farouk S. Mjalli ([email protected]), Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman.Search for more papers by this authorTalal Al-Wahaibi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorAbdulaziz Al-Hashmi
Sultan Qaboos University, Department of Petroleum and Chemical Engineering, P.O. Box 33, Muscat, Oman
Search for more papers by this authorBasim Abu-Jdayil
United Arab Emirates University, Department of Chemical and Petroleum Engineering, P.O. Box 15551, Al Ain, United Arab Emirates
Search for more papers by this authorAbstract
Microscale processes offer a substantial advantage to the process industry as separation is conducted rapidly and efficiently. However, the effectiveness of the separation depends on the stability of the flow regime. Experimental and numerical analysis was carried out to characterize the flow patterns of polyethylene glycol 200 (PEG200) and diesel fuel at several flow ratios in order to achieve optimal conditions for a stable pattern. Computational fluid dynamics (CFD) was employed using the volume-of-fluid (VOF) model and the results were validated with the experimental data. Both experimental and numerical outcomes revealed two-phase flow patterns. These findings enable the application of the simulated module for further liquid-liquid mass transfer studies where sulfuric compounds exist as solutes in the fuel.
Supporting Information
Filename | Description |
---|---|
ceat201900584-sup-0001-misc_information.pdf159.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 B. Sun, J. Jiang, N. Shi, W. Xu, Process Saf. Prog. 2016, 35 (4), 365–373.
- 2 J. G. Kralj, H. R. Sahoo, K. F. Jensen, Lab Chip 2007, 7 (2), 256–263.
- 3 Q. Li, P. Angeli, Chem. Eng. Sci. 2016, 143, 276–286.
- 4 D. Jaritsch, A. Holbach, N. Kockmann, J. Fluids Eng. 2014, 136 (9), 091211-091211-7.
- 5 H. Breisig, M. Schmidt, H. Wolff, A. Jupke, M. Wessling, Chem. Eng. J. 2017, 307, 143–149.
- 6 W. Lan, S. Jing, X. Guo, S. Li, Chem. Eng. Sci. 2017, 158, 58–63.
- 7 U. Engelmann, G. Schmidt-Naake, J. Maier, P. Seifert, Macromol. Theory Simul. 1994, 3 (5), 855–883.
- 8 T. Iwasaki, J.-i. Yoshida, Macromolecules 2005, 38 (4), 1159–1163.
- 9 P. Watts, S. J. Haswell, Chem. Soc. Rev. 2005, 34 (3), 235–246.
- 10 I. Vural Gürsel, N. Kockmann, V. Hessel, Chem. Eng. Sci. 2017, 169 (Suppl.C), 3–17.
- 11 A.-L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 2008, 63 (16), 4035–4044.
- 12 A. Salim, M. Fourar, J. Pironon, J. Sausse, Can. J. Chem. Eng. 2008, 86 (6), 978–988.
- 13 D. Tsaoulidis, V. Dore, P. Angeli, N. V. Plechkova, K. R. Seddon, Int. J. Multiphase Flow 2013, 54, 1–10.
- 14 D. Tsaoulidis, P. Angeli, Chem. Eng. J. 2015, 262, 785–793.
- 15 M. N. Kashid, D. W. Agar, Chem. Eng. J. 2007, 131 (1–3), 1–13.
- 16 M. N. Kashid, Y. M. Harshe, D. W. Agar, Ind. Eng. Chem. Res. 2007, 46 (25), 8420–8430.
- 17 J. R. Burns, C. Ramshaw, Lab Chip 2001, 1 (1), 10–15.
- 18 J. Jovanović, E. V. Rebrov, T. A. Nijhuis, M. T. Kreutzer, V. Hessel, J. C. Schouten, Ind. Eng. Chem. Res. 2012, 51 (2), 1015–1026.
- 19 R. Gupta, S. S. Y. Leung, R. Manica, D. F. Fletcher, B. S. Haynes, Chem. Eng. Sci. 2013, 92, 180–189.
- 20 L. Campo-Deaño, F. J. Galindo-Rosales, F. T. Pinho, M. A. Alves, M. S. N. Oliveira, J. Non-Newton Fluid Mech. 2011, 166 (21), 1286–1296.
- 21 C.-X. Zhao, A. P. J. Middelberg, Chem. Eng. Sci. 2011, 66 (7), 1394–1411.
- 22 R. C. Lo, Chem. Eng. Process Technol. 2013, 1, 1002–1005.
- 23 N. Assmann, A. Ładosz, P. Rudolf von Rohr, Chem. Eng. Technol. 2013, 36 (6), 921–936.
- 24 L. Yang, Y. Zhao, Y. Su, G. Chen, Chem. Eng. Technol. 2013, 36 (6), 985–992.
- 25 Y. Su, A. Lautenschleger, G. Chen, E. Y. Kenig, Ind. Eng. Chem. Res. 2014, 53 (1), 390–401.
- 26 M. N. Kashid, F. Platte, D. W. Agar, S. Turek, J. Comput. Appl. Math. 2007, 203 (2), 487–497.
- 27 M. N. Kashid, D. W. Agar, S. Turek, Chem. Eng. Sci. 2007, 62 (18), 5102–5109.
- 28 M. N. Kashid, A. Renken, L. Kiwi-Minsker, Chem. Eng. Res. Des. 2010, 88 (3), 362–368.
- 29 S. K. R. Cherlo, S. Kariveti, S. Pushpavanam, Ind. Eng. Chem. Res. 2010, 49 (2), 893–899.
- 30 R. Raj, N. Mathur, V. V. Buwa, Ind. Eng. Chem. Res. 2010, 49 (21), 10606–10614.
- 31 Q. Li, P. Angeli, Chem. Eng. J. 2017, 328, 717–736.
- 32 C. Asumana, G. Yu, X. Li, J. Zhao, G. Liu, X. Chen, Green Chem. 2010, 12 (11), 2030.
- 33 F. R. Moghadam, S. Azizian, M. Bayat, M. Yarie, E. Kianpour, M. A. Zolfigol, Fuel 2017, 208, 214–222.
- 34 B. Gabrić, A. Sander, M. Cvjetko Bubalo, D. Macut, Sci. World J. 2013, 512953.
- 35 B. Rodríguez-Cabo, H. Rodríguez, E. Rodil, A. Arce, A. Soto, Fuel 2014, 117, 882–889.
- 36 S. Gao, J. Li, X. Chen, A. A. Abdeltawab, S. M. Yakout, G. Yu, Fuel 2018, 224, 545–551.
- 37 S. E. E. Warrag, C. J. Peters, M. C. Kroon, Curr. Opin. Green Sustainable Chem. 2017, 5, 55–60.
- 38 S. E. E. Warrag, N. R. Rodriguez, I. M. Nashef, M. van Sint Annaland, J. I. Siepmann, M. C. Kroon, C. J. Peters, J. Chem. Eng. Data 2017, 62 (9), 2911–2919.
- 39 Z. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, I. M. Al-Nashef, Ind. Eng. Chem. Res. 2014, 53 (16), 6815–6823.
- 40 W. S. Ahmed Rahma, F. S. Mjalli, T. Al-Wahaibi, A. A. Al-Hashmi, Chem. Eng. Res. Des. 2017, 120, 271–283.
- 41 Z. Sani Gano, F. Mjalli, T. Al Wahaibi, Y. Al-Wahaibi, Int. J. Chem. Eng. Appl. 2015, 6, 367–371.
- 42 I. Vural Gürsel, S. K. Kurt, J. Aalders, Q. Wang, T. Noël, K. D. P. Nigam, N. Kockmann, V. Hessel, Chem. Eng. J. 2016, 283, 855–868.
- 43 A. Sahu, A. B. Vir, L. N. S. Molleti, S. Ramji, S. Pushpavanam, Chem. Eng. Process. 2016, 104, 190–200.
- 44 K. K. Singh, A. U. Renjith, K. T. Shenoy, Chem. Eng. Process. 2015, 98, 95–105.
- 45 M. Darekar, N. Sen, K. K. Singh, S. Mukhopadhyay, K. T. Shenoy, S. K. Ghosh, Hydrometallurgy 2014, 144–145, 54–62.
- 46 Z. Al-Ani, T. Al-Wahaibi, F. S. Mjalli, A. Al-Hashmi, B. Abu-Jdayil, Chem. Eng. Res. Des. 2017, 119, 294–300.
- 47 L. Alonso, A. Arce, M. Francisco, O. Rodríguez, A. Soto, AIChE J. 2007, 53 (12), 3108–3115.
- 48 C. W. Hirt, B. D. Nichols, J. Comput. Phys. 1981, 39 (1), 201–225.
- 49 P. Garstecki, M. J. Fuerstman, H. A. Stone, G. M. Whitesides, Lab Chip 2006, 6 (3), 437–446.
- 50 A. V. Minakov, A. A. Shebeleva, A. A. Yagodnitsyna, A. V. Kovalev, A. V. Bilsky, Chem. Eng. Technol. 2019, 42 (5), 1037–1044.
- 51 M. Darekar, K. K. Singh, S. Mukhopadhyay, K. T. Shenoy, Ind. Eng. Chem. Res. 2017, 56 (42), 12215–12226.