Flowsheet Modeling and Simulation of Biomass Steam Gasification for Hydrogen Production
Corresponding Author
Abrar Inayat
University of Sharjah, Department of Sustainable and Renewable Energy Engineering, 27272 Sharjah, United Arab Emirates
Correspondence: Abrar Inayat ([email protected]), Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates.Search for more papers by this authorMohsin Raza
Otto von Guericke University, Faculty of Process and System Technology, 39106 Magdeburg, Germany
Search for more papers by this authorZakir Khan
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, Lahore, Pakistan
Search for more papers by this authorChaouki Ghenai
University of Sharjah, Department of Sustainable and Renewable Energy Engineering, 27272 Sharjah, United Arab Emirates
Search for more papers by this authorMuhammad Aslam
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, Lahore, Pakistan
Search for more papers by this authorMuhammad Shahbaz
Hamad Bin Khalif University (HBKU), Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, 5825 Doha, Qatar
Search for more papers by this authorMuhammad Ayoub
Universiti Teknologi PETRONAS, Department of Chemical Engineering, 31750 Bandar Seri Iskander, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Abrar Inayat
University of Sharjah, Department of Sustainable and Renewable Energy Engineering, 27272 Sharjah, United Arab Emirates
Correspondence: Abrar Inayat ([email protected]), Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates.Search for more papers by this authorMohsin Raza
Otto von Guericke University, Faculty of Process and System Technology, 39106 Magdeburg, Germany
Search for more papers by this authorZakir Khan
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, Lahore, Pakistan
Search for more papers by this authorChaouki Ghenai
University of Sharjah, Department of Sustainable and Renewable Energy Engineering, 27272 Sharjah, United Arab Emirates
Search for more papers by this authorMuhammad Aslam
COMSATS University Islamabad, Department of Chemical Engineering, Lahore Campus, Lahore, Pakistan
Search for more papers by this authorMuhammad Shahbaz
Hamad Bin Khalif University (HBKU), Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, 5825 Doha, Qatar
Search for more papers by this authorMuhammad Ayoub
Universiti Teknologi PETRONAS, Department of Chemical Engineering, 31750 Bandar Seri Iskander, Perak, Malaysia
Search for more papers by this authorAbstract
Hydrogen production from biomass steam gasification is systematically reviewed. Equilibrium modeling and simulation studies using various techniques for effective hydrogen production are presented. Heat integration, economic analysis of the hydrogen production, and systematic design algorithms research publications are overviewed and discussed for energy-efficient and economic hydrogen production from various biomass feedstocks. Comparison and analysis of the results strongly suggest the viable potential of biomass steam gasification for hydrogen production from small to large scales with applications for thermal heat, power generation, and many other industrial fields.
References
- 1 H. Ben, A. Ragauskas, Innovative Energy Res. 2017, 6 (1), 119.
- 2 N. P. R. Helleur, M. Ikura, D. Liu, J. Anal. Appl. Pyrolysis 2001, 58–59, 813–824.
- 3 M. Asadullah, Renewable Sustainable Energy Rev. 2014, 40, 118–132. DOI: https://doi.org/10.1016/j.rser.2014.07.132
- 4
T. Wongsiriamnuay, N. Kannang, N. Tippayawong, Int. J. Chem. Eng.
2013, 2013, 1–9. DOI: https://doi.org/10.1155/2013/297941
10.1155/2013/297941 Google Scholar
- 5 F. L. Chan, A. Tanksale, Renewable Sustainable Energy Rev. 2014, 38, 428–438. DOI: https://doi.org/10.1016/j.rser.2014.06.011
- 6 A. R. Mohammad, U. H. Joardder, P. K. Halder, N. Paul, J. Eng. Gas Turbines Power 2014, 1, 1–9. DOI: https://doi.org/10.1155/2014/252848
- 7 E. Cardozo, C. Erlich, L. Alejo, T. H. Fransson, Fuel 2014, 115, 778–787. DOI: https://doi.org/10.1016/j.fuel.2013.07.054
- 8 D. Neves, H. Thunman, A. Matos, L. Tarelho, A. Gómez-Barea, Prog. Energy Combust. Sci. 2011, 37 (5), 611–630. DOI: https://doi.org/10.1016/j.pecs.2011.01.001
- 9 V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha, P. Subramanian, Renewable Sustainable Energy Rev. 2009, 13 (1), 179–186. DOI: https://doi.org/10.1016/j.rser.2007.07.001
- 10 G. Pilon, J.-M. Lavoie, ACS Sustainable Chem. Eng. 2012, 1 (1), 198–204. DOI: https://doi.org/10.1021/sc300098e
- 11 A. Bhavanam, R. C. Sastry, Int. J. Chem. Eng. Appl. 2011, 2 (6), 425–433.
- 12 M. A. Hamad, A. M. Radwan, D. A. Heggo, T. Moustafa, Renewable Energy 2016, 85, 1290–1300. DOI: https://doi.org/10.1016/j.renene.2015.07.082
- 13 A. Inayat, M. Raza, Renewable Sustainable Energy Rev. 2019, 107, 360–373. DOI: https://doi.org/10.1016/j.rser.2019.03.023
- 14 F. Rosillo-Calle, J. Chem. Tech. Biotechnol. 2016, 91, 1933–1945.
- 15 U. I. Pipat Pichestapong, P. Prapakornrattana, K. Charoen, 3rd TIChE Int. Conf. 2013, 1 (1), 1–3.
- 16 K. P. S. K. Sansaniwala, M. A. Rosenb, S. K. Tyagia, Renewable Sustainable Energy Rev. 2017, 72, 363–384. DOI: https://doi.org/10.1016/j.rser.2017.01.038
- 17 E. Pütün, Energy 2010, 35 (1), 2761–2766. DOI: https://doi.org/10.1016/j.energy.2010.02.024
- 18 S. J. Yoon, Y.-I. Son, Y.-K. Kim, J.-G. Lee, Renewable Energy 2012, 42, 163–167. DOI: https://doi.org/10.1016/j.renene.2011.08.028
- 19 M. S. J. Werthera, E.-U. Hartgea, T. Ogadab, Z. Siagib, Prog. Energy Combust. Sci. 2000, 26, 1–27.
- 20 N. Fernando, M. Narayana, Renewable Energy 2016, 99, 698–710. DOI: https://doi.org/10.1016/j.renene.2016.07.057
- 21 S. K. Sansaniwal, M. A. Rosen, S. K. Tyagi, Renewable Sustainable Energy Rev. 2017, 80, 23–43. DOI: https://doi.org/10.1016/j.rser.2017.05.215
- 22
H. H. Zengli Zhao, Eng. Life Sci.
2001, 5 (1), 197–199.
10.1002/1618-2863(200111)1:5<197::AID-ELSC197>3.0.CO;2-8 Google Scholar
- 23 J. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, M. A. Mendívil, Renewable Sustainable Energy Rev. 2013, 18, 174–183. DOI: https://doi.org/10.1016/j.rser.2012.10.021
- 24 K. Göransson, U. Söderlind, J. He, W. Zhang, Renewable Sustainable Energy Rev. 2011, 15 (1), 482–492. DOI: https://doi.org/10.1016/j.rser.2010.09.032
- 25 A. Inayat, M. Inayat, M. Shahbaz, S. A. Sulaiman, M. Raza, S. Yusup, Renewable Energy 2020, 145, 671–681. DOI: https://doi.org/10.1016/j.renene.2019.06.104
- 26 M. Shahbaz, S. Yusup, A. Inayat, D. O. Patrick, M. Ammar, Renewable Sustainable Energy Rev. 2017, 73, 468–476. DOI: https://doi.org/10.1016/j.rser.2017.01.153
- 27 A. K. Rajvanshi, Biomass Gasification, Alternative Energy Agric., Yogi Goswami, CRC Press, India 1986.
- 28 D. B. I. De Bari, M. Cardinale, D. Matera, F. Nanna, D. Viggiano, Energy Fuels 1999, 14, 889–898.
- 29 S. Chopra, A. K. Jain, Agric. Eng. Int. CIGR. J. 2007, 4 (5), 1–23.
- 30 S. K. S. Sunil Kumar, Int. J. Energy Eng. 2016, 6 (1A), 32–43. DOI: https://doi.org/10.5923/s.ijee.201601.05
- 31 A. F. Kirkels, G. P. J. Verbong, Renewable Sustainable Energy Rev. 2011, 15 (1), 471–481. DOI: https://doi.org/10.1016/j.rser.2010.09.046
- 32 M. A. Gartzen Lopez, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar, Renewable Sustainable Energy Rev. 2018, 82, 576–596. DOI: https://doi.org/10.1016/j.rser.2017.09.032
- 33 A. D. Atila Caglar, Energy Convers. Manage. 2002, 43, 109–117.
- 34 S. A. Archer, R. Steinberger-Wilckens, Int. J. Hydrogen Energy 2018, 43, 23178–23192.
- 35 C. Lin, W. Weng, Renewable Energy 2017, 109, 135–143. DOI: https://doi.org/10.1016/j.renene.2017.03.019
- 36 K. M. J. D. Martínez, R. V. Andradeb, E. E. Silva Lora, Renewable Energy 2012, 38 (1), 1–9. DOI: https://doi.org/10.1016/j.renene.2011.07.035
- 37 H. Balat, E. Kırtay, Int. J. Hydrogen Energy 2010, 35 (14), 7416–7426. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.137
- 38 R. C. Saxena, D. Seal, S. Kumar, H. B. Goyal, Renewable Sustainable Energy Rev. 2008, 12 (7), 1909–1927. DOI: https://doi.org/10.1016/j.rser.2007.03.005
- 39 J. D. Holladay, J. Hu, D. L. King, Y. Wang, Catal. Today 2009, 139 (4), 244–260. DOI: https://doi.org/10.1016/j.cattod.2008.08.039
- 40 F. P. C. Franco, I. Gulyurtlu, I. Cabrita, Fuel 2003, 82, 835–842.
- 41
D. C. B. Dipal Baruah, Renewable Sustainable Energy Rev.
2014, 39 (1), 806–815. DOI: https://doi.org/10.1016/j.rser.2014.07.129
10.1016/j.rser.2014.07.129 Google Scholar
- 42 W. Gao, L. Yan, M. Tahmoures, A. H. Asgari Safdar, Chem. Eng. Technol. 2018, 41 (3), 447–453. DOI: https://doi.org/10.1002/ceat.201700272
- 43 M. Baratieri, E. Pieratti, T. Nordgreen, M. Grigiante, Waste Biomass Valorization 2010, 1 (3), 283–291. DOI: https://doi.org/10.1007/s12649-010-9034-6
- 44
P. Lü, X. Kong, C. Wu, Z. Yuan, L. Ma, J. Chang, Front. Chem. Eng. China
2008, 2 (2), 209–213. DOI: https://doi.org/10.1007/s11705-008-0039-7
10.1007/s11705-008-0039-7 Google Scholar
- 45 Y. Pang, S. Shen, Y. Chen, Waste Biomass Valorization 2017, 10, 1333–1341. DOI: https://doi.org/10.1007/s12649-017-0143-3
- 46 S. Rupesh, C. Muraleedharan, P. Arun, Int. J. Energy Environ. Eng. 2015, 6 (4), 375–384. DOI: https://doi.org/10.1007/s40095-015-0182-0
- 47 W. Duan, Q. Yu, J. Therm. Anal. Calorim. 2017, 131 (2), 1671–1680. DOI: https://doi.org/10.1007/s10973-017-6596-6
- 48 S. Tiwary, S. B. Ghugare, P. D. Chavan, S. Saha, S. Datta, G. Sahu, S. S. Tambe, Waste Biomass Valorization 2018, 11, 323–341. DOI: https://doi.org/10.1007/s12649-018-0378-7
- 49 L. Shen, Y. Gao, J. Xiao, Biomass Bioenergy 2008, 32 (2), 120–127. DOI: https://doi.org/10.1016/j.biombioe.2007.08.002
- 50 M. K. Karmakar, A. B. Datta, Bioresour. Technol. 2011, 102 (2), 1907–1913. DOI: https://doi.org/10.1016/j.biortech.2010.08.015
- 51 A. Abuadala, I. Dincer, Thermochim. Acta 2010, 507–508, 127–134. DOI: https://doi.org/10.1016/j.tca.2010.05.013
- 52 C. Li, K. Suzuki, Bioresour. Technol. 2010, 101 (1), S86–S90. DOI: https://doi.org/10.1016/j.biortech.2009.05.010
- 53 C. Loha, H. Chattopadhyay, P. K. Chatterjee, Energy 2011, 36 (7), 4063–4071. DOI: https://doi.org/10.1016/j.energy.2011.04.042
- 54 C. Loha, P. K. Chatterjee, H. Chattopadhyay, Energy Convers. Manage. 2011, 52 (3), 1583–1588. DOI: https://doi.org/10.1016/j.enconman.2010.11.003
- 55 M. C. Acar, Y. E. Böke, Biomass Bioenergy 2019, 125, 131–138. DOI: https://doi.org/10.1016/j.biombioe.2019.04.012
- 56 P. Brachi, R. Chirone, F. Miccio, M. Miccio, G. Ruoppolo, Fuel 2018, 220, 744–753. DOI: https://doi.org/10.1016/j.fuel.2018.02.027
- 57 A. Melgar, J. F. Pérez, H. Laget, A. Horillo, Energy Convers. Manage. 2007, 48 (1), 59–67. DOI: https://doi.org/10.1016/j.enconman.2006.05.004
- 58 H. Ghassemi, R. Shahsavan-Markadeh, Energy Convers. Manage. 2014, 79, 18–24. DOI: https://doi.org/10.1016/j.enconman.2013.12.007
- 59 J. Han, Y. Liang, J. Hu, L. Qin, J. Street, Y. Lu, F. Yu, Energy Convers. Manage. 2017, 153, 641–648. DOI: https://doi.org/10.1016/j.enconman.2017.10.030
- 60 M. Puig-Arnavat, J. C. Bruno, A. Coronas, Energy Fuels 2012, 26 (2), 1385–1394. DOI: https://doi.org/10.1021/ef2019462
- 61 Z. Khan, A. Inayat, S. Yusup, M. M. Ahmad, Int. J. Hydrogen Energy 2015, 40 (29), 8824–8832. DOI: https://doi.org/10.1016/j.ijhydene.2015.05.069
- 62 A. Inayat, M. M. Ahmad, M. I. A. Mutalib, S. Yusup, Fuel Process. Technol. 2012, 93 (1), 26–34. DOI: https://doi.org/10.1016/j.fuproc.2011.08.014
- 63 A. K. Sharma, Solar Energy 2008, 82 (10), 918–928. DOI: https://doi.org/10.1016/j.solener.2008.03.004
- 64 M. Puig-Arnavat, J. C. Bruno, A. Coronas, Renewable Sustainable Energy Rev. 2010, 14 (9), 2841–2851. DOI: https://doi.org/10.1016/j.rser.2010.07.030
- 65 X. T. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, J. R. Kim, Biomass Bioenergy 2004, 26 (2), 171–193. DOI: https://doi.org/10.1016/S0961-9534(03)00084-9
- 66 C. R. Altafini, P. R. Wander, R. M. Barreto, Energy Convers. Manage. 2003, 44 (17), 2763–2777. DOI: https://doi.org/10.1016/s0196-8904(03)00025-6
- 67 P. Basu, P. Kaushal, Chem. Prod. Process Model. 2009, 4 (1), A 21.
- 68 J. D. Smith, A. Alembath, H. Al-Rubaye, J. Yu, X. Gao, H. Golpour, Chem. Eng. Technol. 2019, 42 (12), 2505–2519. DOI: https://doi.org/10.1002/ceat.201900304
- 69 Z. Khan, S. Yusup, M. M. Ahmad, N. A. Rashidi, Int. J. Hydrogen Energy 2014, 39 (7), 3286–3293. DOI: https://doi.org/10.1016/j.ijhydene.2013.12.020
- 70 M. Shahbaz, S. Yusup, A. Inayat, D. O. Patrick, M. Ammar, A. Pratama, Energy Fuels 2017, 31 (12), 13824–13833. DOI: https://doi.org/10.1021/acs.energyfuels.7b03237
- 71 M. Shahbaz, S. A. Taqvi, A. C. Minh Loy, A. Inayat, F. Uddin, A. Bokhari, S. R. Naqvi, Renewable Energy 2019, 132, 243–254. DOI: https://doi.org/10.1016/j.renene.2018.07.142
- 72 M. Shahbaz, S. Yusup, A. Inayat, M. Ammar, D. O. Patrick, A. Pratama, S. R. Naqvi, Energy Fuels 2017, 31 (11), 12350–12357. DOI: https://doi.org/10.1021/acs.energyfuels.7b02670
- 73 J. Udomsirichakorn, P. A. Salam, Renewable Sustainable Energy Rev. 2014, 30, 565–579. DOI: https://doi.org/10.1016/j.rser.2013.10.013
- 74 N. H. Florin, A. T. Harris, Int. J. Hydrogen Energy 2007, 32 (17), 4119–4134. DOI: https://doi.org/10.1016/j.ijhydene.2007.06.016
- 75
M. R. Mahishi, M. S. Sadrameli, S. Vijayaraghavan, D. Y. Goswami, J. Eng. Gas Turbines Power
2008, 130 (1), 011501.
10.1115/1.2747252 Google Scholar
- 76 Y. Zhang, J. Xiao, L. Shen, Ind. Eng. Chem. Res. 2009, 48 (11), 5351–5359. DOI: https://doi.org/10.1021/ie801983z
- 77 K. Ghasemzadeh, M. Khosravi, S. M. Sadati Tilebon, A. Aghaeinejad-Meybodi, A. Basile, Int. J. Hydrogen Energy 2018, 43 (26), 11719–11730. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.221
- 78 E. S. Aydin, O. Yucel, H. Sadikoglu, Int. J. Hydrogen Energy 2018, 43 (2), 1105–1115. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.013
- 79 E. Shayan, V. Zare, I. Mirzaee, Energy Convers. Manage. 2018, 159, 30–41. DOI: https://doi.org/10.1016/j.enconman.2017.12.096
- 80 A. Martínez González, E. E. Silva Lora, J. C. Escobar Palacio, O. A. Almazán del Olmo, Int. J. Hydrogen Energy 2018, 43 (16), 7808–7822. DOI: https://doi.org/10.1016/j.ijhydene.2018.03.025
- 81 E. Yaghoubi, Q. Xiong, M. H. Doranehgard, M. M. Yeganeh, G. Shahriari, M. Bidabadi, Chem. Eng. Process. Process Intensif. 2018, 126, 210–221. DOI: https://doi.org/10.1016/j.cep.2018.03.005
- 82 D. Schweitzer, F. G. Albrecht, M. Schmid, M. Beirow, R. Spörl, R.-U. Dietrich, A. Seitz, Int. J. Hydrogen Energy 2018, 43 (2), 569–579. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.001
- 83
J. George, P. Arun, C. Muraleedharan, Procedia Technol.
2016, 25, 982–989. DOI: https://doi.org/10.1016/j.protcy.2016.08.194
10.1016/j.protcy.2016.08.194 Google Scholar
- 84 T. Y. Ahmed, M. M. Ahmad, H. L. Lam, S. Yusup, Clean Technol. Environ. Policy 2013, 15 (3), 513–523. DOI: https://doi.org/10.1007/s10098-013-0606-6
- 85 C. Pfeifer, B. Puchner, H. Hofbauer, Chem. Eng. Sci. 2009, 64 (23), 5073–5083. DOI: https://doi.org/10.1016/j.ces.2009.08.014
- 86 T. Pröll, H. Hofbauer, Fuel Process. Technol. 2008, 89 (11), 1207–1217. DOI: https://doi.org/10.1016/j.fuproc.2008.05.020
- 87
T. Proll, H. Hofbauer, Int. J. Chem. Reactor Eng.
2008, 6, A89.
10.2202/1542-6580.1769 Google Scholar
- 88 E. Biagini, L. Masoni, L. Tognotti, Bioresour. Technol. 2010, 101 (16), 6381–6388. DOI: https://doi.org/10.1016/j.biortech.2010.03.052
- 89 A. Abuadala, I. Dincer, Int. J. Hydrogen Energy 2010, 35 (24), 13146–13157. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.012
- 90 M. K. Cohce, M. A. Rosen, I. Dincer, Int. J. Hydrogen Energy 2011, 36 (17), 11388–11398. DOI: https://doi.org/10.1016/j.ijhydene.2011.02.033
- 91 M. K. Cohce, I. Dincer, M. A. Rosen, Int. J. Hydrogen Energy 2010, 35 (10), 4970–4980. DOI: https://doi.org/10.1016/j.ijhydene.2009.08.066
- 92 M. K. Cohce, I. Dincer, M. A. Rosen, Bioresour. Technol. 2011, 102 (18), 8466–8474. DOI: https://doi.org/10.1016/j.biortech.2011.06.020
- 93 P. Kaushal, R. Tyagi, Renewable Energy 2017, 101, 629–636. DOI: https://doi.org/10.1016/j.renene.2016.09.011
- 94
S. Rupesh, C. Muraleedharan, P. Arun, Resour.-Effic. Technol.
2016, 2 (2), 94–103. DOI: https://doi.org/10.1016/j.reffit.2016.07.002
10.1016/j.reffit.2016.07.002 Google Scholar
- 95 H. Ge, H. Zhang, W. Guo, T. Song, L. Shen, Fuel 2019, 241, 118–128. DOI: https://doi.org/10.1016/j.fuel.2018.11.091
- 96
J. Kalina, M. Swierzewski, Energy Procedia
2017, 129, 660–667.
10.1016/j.egypro.2017.09.137 Google Scholar
- 97 A. Gagliano, F. Nocera, M. Bruno, G. Cardillo, Energy Procedia 2017, 111, 1010–1019. DOI: https://doi.org/10.1016/j.egypro.2017.03.264
- 98 J. H. Pauls, N. Mahinpey, E. Mostafavi, Biomass Bioenergy 2016, 95, 157–166. DOI: https://doi.org/10.1016/j.biombioe.2016.10.002
- 99 N. Gao, A. Li, C. Quan, F. Gao, Int. J. Hydrogen Energy 2008, 33 (20), 5430–5438. DOI: https://doi.org/10.1016/j.ijhydene.2008.07.033
- 100 M. Asadullah, S.-i. Ito, K. Kunimori, M. Yamada, K. Tomishige, J. Catal. 2002, 208 (2), 255–259. DOI: https://doi.org/10.1006/jcat.2002.3575
- 101 J.-F. Brau, M. Morandin, T. Berntsson, Clean Technol. Environ. Policy 2013, 15 (3), 501–512. DOI: https://doi.org/10.1007/s10098-013-0591-9
- 102 S. Müller, M. Stidl, T. Pröll, R. Rauch, H. Hofbauer, Biomass Convers. Biorefin. 2011, 1 (1), 55–61. DOI: https://doi.org/10.1007/s13399-011-0004-4
- 103 A. Inayat, M. M. Ahmad, M. I. A. Mutalib, S. Yusup, Chem. Eng. Trans. 2011, 25, 971–976.
- 104 S. P. Cicconardi, A. Perna, G. Spazzafumo, F. Tunzio, Int. J. Hydrogen Energy 2006, 31 (6), 693–700. DOI: https://doi.org/10.1016/j.ijhydene.2005.07.004
- 105 S. Heyne, M. C. Seemann, S. Harvey, Chem. Eng. Trans. 2010, 21, 409–414. DOI: https://doi.org/10.3303/CET1021069
- 106 M. Pavlas, P. Stehlík, J. Oral, J. Klemes, J.-K. Kim, B. Firth, Appl. Therm. Eng. 2010, 30 (1), 30–35. DOI: https://doi.org/10.1016/j.applthermaleng.2009.03.013
- 107 J. Sadhukhan, Y. Zhao, N. Shah, N. P. Brandon, Chem. Eng. Sci. 2010, 65 (6), 1942–1954. DOI: https://doi.org/10.1016/j.ces.2009.11.022
- 108 C. Calin-Cristian, Int. J. Hydrogen Energy 2010, 35 (14), 7485–7497. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.160
- 109 T. F. Yee, I. E. Grossmann, Comput. Chem. Eng. 1990, 14 (10), 1165–1184. DOI: https://doi.org/10.1016/0098-1354(90)85010-8
- 110 Y. D. Lang, L. T. Biegler, I. E. Grossmann, Comput. Chem. Eng. 1988, 12 (4), 311–327. DOI: https://doi.org/10.1016/0098-1354(88)85044-0
- 111 R. C. Baliban, J. A. Elia, C. A. Floudas, Comp. Chem. Eng. 2011, 35 (9), 1647–1690. DOI: https://doi.org/10.1016/j.compchemeng.2011.01.041
- 112 A. Inayat, M. M. Ahmad, M. I. A. Mutalib, S. Yusup, Z. Khan, Energy Sources Part B 2017, 12 (2), 158–165. DOI: https://doi.org/10.1080/15567249.2014.937881
- 113 A. A. Ahmad, N. A. Zawawi, F. H. Kasim, A. Inayat, A. Khasri, Renewable Sustainable Energy Rev. 2016, 53, 1333–1347. DOI: https://doi.org/10.1016/j.rser.2015.09.030
- 114 W. Iwasaki, Int. J. Hydrogen Energy 2003, 28 (9), 939–944. DOI: https://doi.org/10.1016/s0360-3199(02)00193-3
- 115 K. Dowaki, T. Ohta, Y. Kasahara, M. Kameyama, K. Sakawaki, S. Mori, Renewable Energy 2007, 32 (1), 80–94. DOI: https://doi.org/10.1016/j.renene.2005.12.010
- 116 P. Lv, C. Wu, L. Ma, Z. Yuan, Renewable Energy 2008, 33 (8), 1874–1879. DOI: https://doi.org/10.1016/j.renene.2007.11.002
- 117 M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, M. S. Mohammad Amran, A. Fakhru'l-Razi, Energy Convers. Manage. 2011, 52 (2), 1555–1561. DOI: https://doi.org/10.1016/j.enconman.2010.10.023
- 118 M. Balat, M. Balat, Int. J. Hydrogen Energy 2009, 34 (9), 3589–3603. DOI: https://doi.org/10.1016/j.ijhydene.2009.02.067
- 119 F. Lau et al., Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass, Technical Report, US Department of Energy, Golden, CO 2002. DOI: https://doi.org/10.2172/816024
- 120 R. Bain, Indirectly heated gasification of biomass to produce hydrogen, National Renewable Energy Laboratory (NREL), Golden, CO 2009.
- 121 M. Martín, I. E. Grossmann, Comp. Chem. Eng. 2011, 35 (9), 1798–1806. DOI: https://doi.org/10.1016/j.compchemeng.2011.03.002
- 122 P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace, J. Jechura, Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier, Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO 2005.
- 123 A. Inayat, M. M. Ahmad, M. I. Abdul Mutalib, S. Yusup, Chem. Eng. Trans. 2011, 25, 971–976.
- 124 S. Hamedani Rajabi, M. Villarini, A. Di Carlo, V. Naso, Energy Procedia 2016, 101, 806–813. DOI: https://doi.org/10.1016/j.egypro.2016.11.102
- 125 T. Nakyai, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, S. Assabumrungrat, D. Saebea, Energy Convers. Manage. 2017, 140, 228–239. DOI: https://doi.org/10.1016/j.enconman.2017.03.002
- 126 P. Jiang, A. S. Berrouk, S. Dara, Chem. Eng. Technol. 2019, 42 (5), 1153–1168. DOI: https://doi.org/10.1002/ceat.201900130
- 127 T. Damartzis, A. Zabaniotou, Renewable Sustainable Energy Rev. 2011, 15 (1), 366–378. DOI: https://doi.org/10.1016/j.rser.2010.08.003
- 128 S. Phillips, A. Aden, J. Jechura, D. Dayton, T. Eggeman, Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass, National Renewable Energy Laboratory (NREL), Golden, CO 2007.