Hydrogen Production by Steam Reforming of Fusel Oil Using a CeCoOx Mixed-Oxide Catalyst
Sarocha Sumrunronnasak
Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, 10330 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Prasert Reubroycharoen
Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, 10330 Bangkok, Thailand
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, 10330 Bangkok, Thailand
Correspondence: Prasert Reubroycharoen ([email protected]), Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Bangkok, 10330, Thailand.Search for more papers by this authorNuttaporn Pimpha
National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, KhlongNueng, 12120 KhlongLuang, PathumThani, Thailand
Search for more papers by this authorNarong Chanlek
Synchrotron Light Research Institute (Public Organization), 30000 NakhonRatchasima, Thailand
Search for more papers by this authorSupawan Tantayanon
Chulalongkorn University, Department of Chemistry, Faculty of Science, 10330 Bangkok, Thailand
Search for more papers by this authorSarocha Sumrunronnasak
Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, 10330 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Prasert Reubroycharoen
Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, 10330 Bangkok, Thailand
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, 10330 Bangkok, Thailand
Correspondence: Prasert Reubroycharoen ([email protected]), Chulalongkorn University, Department of Chemical Technology and Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Bangkok, 10330, Thailand.Search for more papers by this authorNuttaporn Pimpha
National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, KhlongNueng, 12120 KhlongLuang, PathumThani, Thailand
Search for more papers by this authorNarong Chanlek
Synchrotron Light Research Institute (Public Organization), 30000 NakhonRatchasima, Thailand
Search for more papers by this authorSupawan Tantayanon
Chulalongkorn University, Department of Chemistry, Faculty of Science, 10330 Bangkok, Thailand
Search for more papers by this authorAbstract
Various CeCoOx mixed-oxide catalysts with different Ce/Co ratios were prepared by surfactant-assisted template precipitation of CeO2 and Ce3O4. The obtained catalysts were characterized by X-ray diffraction, X-ray photoelectron spectra, hydrogen temperature-programmed reduction, nitrogen physisorption, and transmission electron microscopy. In general, the mixed-oxide CeCoOx catalysts showed well-dispersed CeO2 and Co3O4 and good catalytic characteristics including a high specific surface area and porous structure. The effectiveness of the prepared catalysts on the hydrogen (H2) production from steam reforming of fusel oil was studied in a packed-bed reactor. Co played an important role in C–C scission to break down the large C2–5 molecules into smaller species resulting in H2 formation. Ce could provide supplementary active oxygen to prevent coke formation on Co, resulting in a more stable activity of the mixed-oxide catalyst throughout the reaction course.
References
- 1 H. Yoshida, R. Yamaoka, M. Arai, Int. J. Mol. Sci. 2014, 16 (1), 350–362. DOI: https://doi.org/10.3390/ijms16010350
- 2 Z. Yaakob, A. Bshish, A. Ebshish, S. M. Tasirin, F. H. Alhasan, Materials 2013, 6 (6), 2229–2239. DOI: https://doi.org/10.3390/ma6062229
- 3
T. Umegaki, Y. Yamada, A. Ueda, N. Kuriyama, Q. Xu, Res. Lett. Phys. Chem.
2009, 2009, 1–4. DOI: https://doi.org/10.1155/2009/631815
10.1155/2009/631815 Google Scholar
- 4 T. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, J. Taiwan Inst. Chem. Eng. 2019, 97, 216–226. DOI: https://doi.org/10.1016/j.jtice.2019.01.025
- 5 N. Prasongthum, R. Xiao, H. Zhang, N. Tsubaki, P. Natewong, P. Reubroycharoen, Fuel Process. Technol. 2017, 160, 185–195.
- 6 Y. Liu, K. Murata, M. Inaba, Catalysts 2016, 6 (2), 26. DOI: https://doi.org/10.3390/catal6020026
- 7 K.-H. Lin, A. C. C. Chang, W.-H. Lin, S.-H. Chen, C.-Y. Chang, H.-F. Chang, Int. J. Hydrogen Energy 2013, 38 (29), 12946–12952. DOI: https://doi.org/10.1016/j.ijhydene.2013.04.134
- 8 J. M. Sánchez, M. M. Barreiro, M. Maroño, Biomass Bioenergy 2011, 35, S132–S144. DOI: https://doi.org/10.1016/j.biombioe.2011.03.037
- 9 F. L. S. Carvalho, Y. J. O. Asencios, J. D. A. Bellido, E. M. Assaf, Fuel Process. Technol. 2016, 142, 182–191. DOI: https://doi.org/10.1016/j.fuproc.2015.10.010
- 10 S. Simsek, B. Ozdalyan, Energies 2018, 11 (3), 625. DOI: https://doi.org/10.3390/en11030625
- 11
N. Montoya, J. Durán, F. Córdoba, I. D. Gil, C. A. Trujillo, G. Rodríguez, Ing. Invest.
2016, 36 (2), 21. DOI: https://doi.org/10.15446/ing.investig.v36n2.52369
10.15446/ing.investig.v36n2.52369 Google Scholar
- 12 E. Papadopoulou, T. Ioannides, Int. J. Hydrogen Energy 2015, 40 (15), 5251–5255. DOI: https://doi.org/10.1016/j.ijhydene.2015.01.057
- 13 S.-W. Yu, H.-H. Huang, C.-W. Tang, C.-B. Wang, Int. J. Hydrogen Energy 2014, 39 (35), 20700–20711. DOI: https://doi.org/10.1016/j.ijhydene.2014.07.139
- 14
A. Braga, Athens J. Sci.
2015, 3 (1), 7–16. DOI: https://doi.org/10.30958/ajs.3-1-1
10.30958/ajs.3-1-1 Google Scholar
- 15 S. S.-Y. Lin, H. Daimon, S. Y. Ha, Appl. Catal., A 2009, 366 (2), 252–261.
- 16 D. Das, J. Llorca, M. Dominguez, S. Colussi, A. Trovarelli, A. Gayen, Int. J. Hydrogen Energy 2015, 40 (33), 10463–10479. DOI: https://doi.org/10.1016/j.ijhydene.2015.06.130
- 17 M. A. Soria, C. Mateos-Pedrero, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Int. J. Hydrogen Energy 2011, 36 (23), 15212–15220. DOI: https://doi.org/10.1016/j.ijhydene.2011.08.117
- 18 H. Cheng, S. Feng, W. Tao, X. Lu, W. Yao, G. Li, Z. Zhou, Int. J. Hydrogen Energy 2014, 39 (24), 12604–12612. DOI: https://doi.org/10.1016/j.ijhydene.2014.06.120
- 19 T. Sukonket, A. Khan, B. Saha, H. Ibrahim, S. Tantayanon, P. Kumar, R. Idem, Energy Fuels 2011, 25 (3), 864–877. DOI: https://doi.org/10.1021/ef101479y
- 20 J. Sun, H. Zhang, N. Yu, S. Davidson, Y. Wang, ChemCatChem 2015, 7 (18), 2932–2936. DOI: https://doi.org/10.1002/cctc.201500336
- 21 A. Abdelkader, H. Daly, Y. Saih, K. Morgan, M. A. Mohamed, S. A. Halawy, C. Hardacre, Int. J. Hydrogen Energy 2013, 38 (20), 8263–8275. DOI: https://doi.org/10.1016/j.ijhydene.2013.04.009
- 22 C. Perdomo, A. Pérez, R. Molina, S. Moreno, Appl. Surf. Sci. 2016, 383, 42–48. DOI: https://doi.org/10.1016/j.apsusc.2016.04.145
- 23 M. Konsolakis, S. A. C. Carabineiro, G. E. Marnellos, M. F. Asad, O. Soares, M. F. R. Pereira, J. J. M. Orfao, J. L. Figueiredo, J. Colloid Interface Sci. 2017, 496, 141–149. DOI: https://doi.org/10.1016/j.jcis.2017.02.014
- 24 M. Castaño, R. Molina, S. Moreno, Catalysts 2015, 5 (2), 905–925. DOI: https://doi.org/10.3390/catal5020905
- 25 S. Sumrunronnasak, N. Chanlek, N. Pimpha, Mater. Chem. Phys. 2018, 216, 143–152.
- 26 S. Sumrunronnasak, S. Tantayanon, S. Kiatgamolchai, T. Sukonket, Int. J. Hydrogen Energy 2016, 41 (4), 2621–2630.
- 27 P. Tamizhdurai, S. Sakthinathan, S. M. Chen, K. Shanthi, S. Sivasanker, P. Sangeetha, Sci. Rep. 2017, 7, 46372. DOI: https://doi.org/10.1038/srep46372
- 28 Z. Lu, C. Mao, M. Meng, S. Liu, Y. Tian, L. Yu, B. Sun, C. M. Li, J. Colloid Interface Sci. 2014, 435, 8–14. DOI: https://doi.org/10.1016/j.jcis.2014.08.015
- 29 F. Zasada, W. Piskorz, P. Stelmachowski, A. Kotarba, J.-F. Paul, T. Płociński, K. J. Kurzydłowski, Z. Sojka, J. Phys. Chem. C 2011, 115 (14), 6423–6432. DOI: https://doi.org/10.1021/jp200581s
- 30 Y. Xie, F. Dong, S. Heinbuch, J. J. Rocca, E. R. Bernstein, Phys. Chem. Chem. Phys. 2010, 12 (4), 947–959. DOI: https://doi.org/10.1039/b915590b
- 31 D. Su, S. Dou, G. Wang, Sci. Rep. 2014, 4, 5767.
- 32 M.-R. Li, Y.-Y. Song, G.-C. Wang, ACS Catal. 2019, 9 (3), 2355–2367. DOI: https://doi.org/10.1021/acscatal.8b03765
- 33 C. He, Y. Yu, L. Yue, N. Qiao, J. Li, Q. Shen, W. Yu, J. Chen, Z. Hao, Appl. Catal., B 2014, 147, 156–166. DOI: https://doi.org/10.1016/j.apcatb.2013.08.039
- 34 L. Qi, Q. Yu, Y. Dai, C. Tang, L. Liu, H. Zhang, F. Gao, L. Dong, Y. Chen, Appl. Catal., B 2012, 119–120, 308–320. DOI: https://doi.org/10.1016/j.apcatb.2012.02.029
- 35 M. Konsolakis, M. Sgourakis, S. A. C. Carabineiro, Appl. Surf. Sci. 2015, 341, 48–54. DOI: https://doi.org/10.1016/j.apsusc.2015.02.188
- 36 H.-S. Na, C.-I. Ahn, A. Jha, K. S. Park, W.-J. Jang, J.-O. Shim, D.-W. Jeong, H.-S. Roh, J. W. Bae, RSC Adv. 2016, 6 (58), 52754–52760.
- 37 I. I. Soykal, H. Sohn, U. S. Ozkan, ACS Catal. 2012, 2 (11), 2335–2348.