Catalytic Hydrogen Production from Methane Partial Oxidation: Mechanism and Kinetic Study
Corresponding Author
Ahmed I. Osman
Queen's University Belfast, David Keir Building, School of Chemistry and Chemical Engineering, Stranmillis Road, BT9 5AG Belfast, UK
Correspondence: Ahmed I. Osman ([email protected]), School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.Search for more papers by this authorCorresponding Author
Ahmed I. Osman
Queen's University Belfast, David Keir Building, School of Chemistry and Chemical Engineering, Stranmillis Road, BT9 5AG Belfast, UK
Correspondence: Ahmed I. Osman ([email protected]), School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.Search for more papers by this authorAbstract
The multifunctional potential of a transition and noble metal catalyst supported on either a single support or combined oxide support in the catalytic partial oxidation of methane (CPOM) is reviewed. The close interaction and interfacial area between the metal, reducible oxide, and acidic support are highlighted, which are crucial for low-temperature CPOM. The effects of the catalyst components and their preparation methods are considered. Their impact on the catalytic performance and stability on the CPOM reaction is evaluated. The two main mechanisms of CPOM, namely, direct partial oxidation and combustion and reforming reaction, are also covered along with the most recent kinetic studies. Finally, the deactivation of the CPOM catalysts is evaluated in terms of coke and carbon deposition along with CO poisoning.
References
- 1 R. Horn, R. Schlogl, Catal. Lett. 2015, 145 (1), 23–39. DOI: https://doi.org/10.1007/s10562-014-1417-z
- 2 P. Weiland, Appl. Microbiol. Biotechnol. 2010, 85 (4), 849–860. DOI: https://doi.org/10.1007/s00253-009-2246-7
- 3Leveraging Natural Gas to Reduce Greenhouse Gas Emissions, Center for Climate and Energy Solutions, Arlington, VA 2013. www.c2es.org/publications/leveraging-natural-gas-reduce-greenhouse-gas-emissions
- 4 B. C. Enger, R. Lodeng, A. Holmen, Appl.Catal., A 2008, 346 (1–2), 1–27. DOI: https://doi.org/10.1016/j.apcata.2008.05.018
- 5 G. Pantaleo, V. La Parola, F. Deganello, P. Calatozzo, R. Bal, A. M. Venezia, Appl. Catal., B 2015, 164, 135–143. DOI: https://doi.org/10.1016/j.apcatb.2014.09.011
- 6 J. A. Velasco, C. Fernandez, L. Lopez, S. Cabrera, M. Boutonnet, S. Jaras, Fuel 2015, 153, 192–201. DOI: https://doi.org/10.1016/j.fuel.2015.03.009
- 7 J. Kagawa, Toxicology 2002, 181–182, 349–353. DOI: https://doi.org/10.1016/S0300-483X(02)00461-4
- 8 V. N. Nguyen, L. Blum, Chem. Ing. Tech. 2015, 87 (4), 354–375. DOI: https://doi.org/10.1002/cite.201400090
- 9 S. Adamu, Q. Xiong, I. A. Bakare, M. M. Hossain, Int. J. Hydrogen Energy 2019, 44 (30), 15811–15822. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.136
- 10 A. I. Osman, J. K. Abu-Dahrieh, D. W. Rooney, S. A. Halawy, M. A. Mohamed, A. Abdelkader, Appl. Catal., B 2012, 127, 307–315. DOI: https://doi.org/10.1016/j.apcatb.2012.08.033
- 11 A. I. Osman, J. K. Abu-Dahrieh, N. Cherkasov, J. Fernandez-Garcia, D. Walker, R. I. Walton, D. W. Rooney, E. Rebrov, Mol. Catal. 2018, 455, 38–47. DOI: https://doi.org/10.1016/j.mcat.2018.05.025
- 12 J. R. Rostrup-Nielsen, Catal. Today 2002, 71 (3–4), 243–247. DOI: https://doi.org/10.1016/S0920-5861(01)00454-0
- 13 A. I. Osman, J. Meudal, F. Laffir, J. Thompson, D. Rooney, Appl. Catal., B 2017, 212, 68–79. DOI: https://doi.org/10.1016/j.apcatb.2016.12.058
- 14 A. C. W. Koh, L. Chen, W. Kee Leong, B. F. G. Johnson, T. Khimyak, J. Lin, Int. J. Hydrogen Energy 2007, 32 (6), 725–730. DOI: https://doi.org/10.1016/j.ijhydene.2006.08.002
- 15 E. C. Faria, R. C. R. Neto, R. C. Colman, F. B. Noronha, Catal. Today 2014, 228, 138–144. DOI: https://doi.org/10.1016/j.cattod.2013.10.058
- 16 W.-S. Dong, H.-S. Roh, K.-W. Jun, S.-E. Park, Y.-S. Oh, Appl. Catal., A 2002, 226 (1–2), 63–72. DOI: https://doi.org/10.1016/S0926-860X(01)00883-3
- 17 A. Scarabello, D. Dalle Nogare, P. Canu, R. Lanza, Appl. Catal., B 2015, 174–175, 308–322. DOI: https://doi.org/10.1016/j.apcatb.2015.03.012
- 18 A. J. de Abreu, A. F. Lucredio, E. M. Assaf, Fuel Process. Technol. 2012, 102, 140–145. DOI: https://doi.org/10.1016/j.fuproc.2012.04.030
- 19 T. Mondal, K. K. Pant, A. K. Dalai, Int. J. Hydrogen Energy 2015, 40 (6), 2529–2544. DOI: https://doi.org/10.1016/j.ijhydene.2014.12.070
- 20 M. Dajiang, C. Yaoqiang, Z. Junbo, W. Zhenling, M. Di, G. Maochu, J. Rare Earths 2007, 25 (3), 311–315. DOI: https://doi.org/10.1016/S1002-0721(07)60428-1
- 21 S. Xu, X. Wang, Fuel 2005, 84 (5), 563–567. DOI: https://doi.org/10.1016/j.fuel.2004.10.008
- 22 Y. Wang, J. Peng, C. Zhou, Z.-Y. Lim, C. Wu, S. Ye, W. G. Wang, Int. J. Hydrogen Energy 2014, 39 (2), 778–787. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.071
- 23 S. Rabe, T.-B. Truong, F. Vogel, Appl. Catal., A 2005, 292, 177–188. DOI: https://doi.org/10.1016/j.apcata.2005.06.001
- 24 S. R. Deshmukh, D. G. Vlachos, Combust. Flame 2007, 149 (4), 366–383. DOI: https://doi.org/10.1016/j.combustflame.2007.02.006
- 25 S. A. Al-Sayari, Open Catal. J. 2013, 6, 17–28. DOI: https://doi.org/10.2174/1876214X20130729001
- 26 R. Horn, K. A. Williams, N. J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S. A. Tupy, L. D. Schmidt, J. Catal. 2007, 249 (2), 380–393. DOI: https://doi.org/10.1016/j.jcat.2007.05.011
- 27 S. Ren, Y. Zhang, Y. Liu, T. Sakao, D. Huisingh, C. M. V. B. Almeida, J. Cleaner Prod. 2019, 210, 1343–1365. DOI: https://doi.org/10.1016/j.jclepro.2018.11.025
- 28 A. I. Osman, J. K. Abu-Dahrieh, F. Laffir, T. Curtin, J. M. Thompson, D. W. Rooney, Appl. Catal., B 2016, 187, 408–418. DOI: https://doi.org/10.1016/j.apcatb.2016.01.017
- 29 T. H. Nguyen, A. Łamacz, A. Krztoń, A. Ura, K. Chałupka, M. Nowosielska, J. Rynkowski, G. Djéga-Mariadassou, Appl. Catal., B 2015, 165, 389–398. DOI: https://doi.org/10.1016/j.apcatb.2014.10.019
- 30 R. Lanza, P. Canu, S. G. Järås, Appl. Catal., A 2010, 375 (1), 92–100. DOI: https://doi.org/10.1016/j.apcata.2009.12.021
- 31 A. I. Osman, J. K. Abu-Dahrieh, M. McLaren, F. Laffir, D. W. Rooney, ChemistrySelect 2018, 3 (5), 1545–1550. DOI: https://doi.org/10.1002/slct.201702660
- 32 V. N. Rogozhnikov, P. V. Snytnikov, A. N. Salanov, A. V. Kulikov, N. V. Ruban, D. I. Potemkin, V. A. Sobyanin, V. V. Kharton, Mater. Lett. 2019, 236, 316–319. DOI: https://doi.org/10.1016/j.matlet.2018.10.133
- 33 C. Alvarez-Galvan, M. Melian, L. Ruiz-Matas, J. L. Eslava, R. M. Navarro, M. Ahmadi, B. Roldan Cuenya, J. L. G. Fierro, Front. Chem. 2019, 7, 104. DOI: https://doi.org/10.3389/fchem.2019.00104
- 34 Z. Boukha, M. Gil-Calvo, B. de Rivas, J. R. González-Velasco, J. I. Gutiérrez-Ortiz, R. López-Fonseca, Appl. Catal., A 2018, 556, 191–203. DOI: https://doi.org/10.1016/j.apcata.2018.03.002
- 35 H. E. Figen, S. Z. Baykara, Int. J. Hydrogen Energy 2015, 40 (24), 7439–7451. DOI: https://doi.org/10.1016/j.ijhydene.2015.02.109
- 36 C. Cheephat, P. Daorattanachai, S. Devahastin, N. Laosiripojana, Appl. Catal., A 2018, 563, 1–8. DOI: https://doi.org/10.1016/j.apcata.2018.06.032
- 37 A. S. Larimi, S. M. Alavi, Fuel 2012, 102, 366–371. DOI: https://doi.org/10.1016/j.fuel.2012.06.050
- 38 X. Cai, Y. Cai, W. Lin, J. Nat. Gas Chem. 2008, 17 (2), 201–207. DOI: https://doi.org/10.1016/S1003-9953(08)60052-3
- 39 H. Ozdemir, M. A. F. Oksüzömer, M. A. Gurkaynak, Fuel 2014, 116, 63–70. DOI: https://doi.org/10.1016/j.fuel.2013.07.095
- 40 R. Jin, Y. Chen, W. Li, W. Cui, Y. Ji, C. Yu, Y. Jiang, Appl. Catal., A 2000, 201 (1), 71–80. DOI: https://doi.org/10.1016/S0926-860X(00)00424-5
- 41 A. G. Steghuis, J. G. van Ommen, J. A. Lercher, Catal. Today 1998, 46 (2–3), 91–97. DOI: https://doi.org/10.1016/S0920–5861(98)00330–7
- 42 C. Ding, J. Wang, Y. Jia, G. Ai, S. Liu, P. Liu, K. Zhang, Y. Han, X. Ma, Int. J. Hydrogen Energy 2016, 41 (25), 10707–10718. DOI: https://doi.org/10.1016/j.ijhydene.2016.04.110
- 43 D. A. Hickman, L. D. Schmidt, J. Catal. 1992, 138 (1), 267–282. DOI: https://doi.org/10.1016/0021-9517(92)90022-A
- 44 R. Horn, K. A. Williams, N. J. Degenstein, L. D. Schmidt, J. Catal. 2006, 242 (1), 92–102. DOI: https://doi.org/10.1016/j.jcat.2006.05.008
- 45 W. Z. Weng, M. S. Chen, Q. G. Yan, T. H. Wu, Z. S. Chao, Y. Y. Liao, H. L. Wan, Catal. Today 2000, 63 (2–4), 317–326. DOI: https://doi.org/10.1016/S0920-5861(00)00475-2
- 46 J. N. Carstens, S. C. Su, A. T. Bell, J. Catal. 1998, 176 (1), 136–142. DOI: https://doi.org/10.1006/jcat.1998.2029
- 47 I. Tavazzi, A. Beretta, G. Groppi, P. Forzatti, J. Catal. 2006, 241 (1), 1–13. DOI: https://doi.org/10.1016/j.jcat.2006.03.018
- 48 Y. Cui, Q. Liu, Z. Yao, B. Dou, Y. Shi, Y. Sun, Int. J. Hydrogen Energy 2019, 44 (23), 11441–11447. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.170
- 49 M. Karaismailoglu, H. E. Figen, S. Z. Baykara, Int. J. Hydrogen Energy 2019, 44 (20), 9922–9929. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.214