Estimation of kLa Values in Bench-Scale Stirred Tank Reactors with Self-Inducing Impeller by Multiphase CFD Simulations
Corresponding Author
Vania Santos-Moreau
IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France
Correspondence: Vania Santos-Moreau ([email protected]), IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France; Cláudio P. Fonte ([email protected]), The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom.Search for more papers by this authorJosé Carlos B. Lopes
Universidade do Porto, LA LSRE/LCM, Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
Search for more papers by this authorCorresponding Author
Cláudio P. Fonte
The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom
Correspondence: Vania Santos-Moreau ([email protected]), IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France; Cláudio P. Fonte ([email protected]), The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom.Search for more papers by this authorCorresponding Author
Vania Santos-Moreau
IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France
Correspondence: Vania Santos-Moreau ([email protected]), IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France; Cláudio P. Fonte ([email protected]), The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom.Search for more papers by this authorJosé Carlos B. Lopes
Universidade do Porto, LA LSRE/LCM, Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
Search for more papers by this authorCorresponding Author
Cláudio P. Fonte
The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom
Correspondence: Vania Santos-Moreau ([email protected]), IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize – BP 3, 69360 Solaize, France; Cláudio P. Fonte ([email protected]), The University of Manchester, School of Chemical Engineering and Analytical Science, Oxford Road, M13 9PL Manchester, United Kingdom.Search for more papers by this authorAbstract
A multiphase computational fluid dynamics (CFD) simulation methodology is developed and proposed for the estimation of the spatial distribution of kLa values in a bench-scale reactor equipped with a self-inducing impeller. The importance of estimating an apparent drag coefficient, which considers the effect of turbulence on the gas bubble rising velocity, is also tackled by applying different correlations available in literature, namely, Brucato, modified Brucato, and Pinelli correlations. The spatial distribution of kLa values in the agitated vessel is found from the CFD results using Danckwert's surface renewal model. An analysis of the gas volume fraction distribution obtained from the simulations is performed in order to choose the most suitable drag model. The modified Brucato correction correlation for the drag force exhibits the best agreement with experimental data.
References
- 1 G. Q. Martin, Ind. Eng. Chem. Proc. Des. Dev. 1972, 11 (3), 397. DOI: https://doi.org/10.1021/i260043a012
- 2 N. A. Deshmukh, S. S. Patil, J. B. Joshi, Chem. Eng. Res. Des. 2006, 84 (2), 124. DOI: https://doi.org/10.1205/cherd.05005
- 3 J. B. Joshi, M. M. Sharma, Can. J. Chem. Eng. 1977, 55 (6), 683. DOI: https://doi.org/10.1002/cjce.5450550609
- 4 K. Saravanan, V. D. Mundale, A. W. Patwardhan, J. B. Joshi, Ind. Eng. Chem. Res. 1996, 35 (5), 1583. DOI: https://doi.org/10.1021/ie9503353
- 5 A. W. Patwardhan, J. B. Joshi, Ind. Eng. Chem. Res. 1999, 38 (1), 49. DOI: https://doi.org/10.1021/ie970504e
- 6 S. B. Sawant, J. B. Joshi, Chem. Eng. J. 1979, 18 (1), 87. DOI: https://doi.org/10.1016/0300-9467(79)80018-0
- 7 J. B. Joshi, Chem. Eng. Commun. 2007, 5 (1–4), 109. DOI: https://doi.org/10.1080/00986448008935957
- 8 K. Saravanan, V. D. Mundale, J. B. Joshi, Ind. Eng. Chem. Res. 1994, 33 (9), 2226. DOI: https://doi.org/10.1021/ie00033a029
- 9 M. M. P. Zieverink, M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, Ind. Eng. Chem. Res. 2006, 45 (13), 4574. DOI: https://doi.org/10.1021/ie060092m
- 10 B. N. Murthy, N. A. Deshmukh, A. W. Patwardhan, J. B. Joshi, Chem. Eng. Sci. 2007, 62 (14), 3839. DOI: https://doi.org/10.1016/j.ces.2007.03.043
- 11 B. N. Murthy, R. S. Ghadge, J. B. Joshi, Chem. Eng. Sci. 2007, 62 (24), 7184. DOI: https://doi.org/10.1016/j.ces.2007.07.005
- 12 B. N. Murthy, R. B. Kasundra, J. B. Joshi, Chem. Eng. J. 2008, 141 (1–3), 332. DOI: https://doi.org/10.1016/j.cej.2008.01.040
- 13 S. E. Forrester, C. D. Rielly, K. J. Carpenter, Chem. Eng. Sci. 1998, 53 (4), 603. DOI: https://doi.org/10.1016/S0009-2509(97)00352-7
- 14 E. H. Stitt, Chem. Eng. J. 2002, 90 (1–2), 47. DOI: https://doi.org/10.1016/S1385-8947(02)00067-0
- 15 G. Ascanio, B. Castro, E. Galindo, Chem. Eng. Res. Des. 2004, 82 (9), 1282. DOI: https://doi.org/10.1205/cerd.82.9.1282.44164
- 16 R. V. Chaudhari, R. V. Gholap, G. Emig, H. Hofmann, Can. J. Chem. Eng. 1987, 65 (5), 744. DOI: https://doi.org/10.1002/cjce.5450650506
- 17 V. Meille, N. Pestre, P. Fongarland, C. de Bellefon, Ind. Eng. Chem. Res. 2004, 43 (4), 924. DOI: https://doi.org/10.1021/ie030569j
- 18 E. Dietrich, C. Mathieu, H. Delmas, J. Jenck, Chem. Eng. Sci. 1992, 47 (13–14), 3597. DOI: https://doi.org/10.1016/0009-2509(92)85075-M
- 19 A. Deimling, B. M. Karandikar, Y. T. Shah, N. L. Carr, Chem. Eng. J. 1984, 29 (3), 127. DOI: https://doi.org/10.1016/0300-9467(84)85038-8
- 20 K. C. Ruthiya, J. van der Schaaf, B. F. M. Kuster, J. C. Schouten, Chem. Eng. J. 2003, 96 (1–3), 55. DOI: https://doi.org/10.1016/j.cej.2003.08.005
- 21 M. Mitrovic, Ph. D. Thesis, Université Claude Bernard Lyon 1, Lyon 2001.
- 22 I. Pitault, P. Fongarland, D. Koepke, M. Mitrovica, D. Ronze, M. Forissier, Chem. Eng. Sci. 2005, 60 (22), 6240. DOI: https://doi.org/10.1016/j.ces.2005.04.041
- 23 M. Braga, Ph. D. Thesis, Université Claude Bernard Lyon 1, Lyon 2013.
- 24 A. Buffo, M. Vanni, D. L. Marchisio, Chem. Eng. Sci. 2012, 70, 31. DOI: https://doi.org/10.1016/j.ces.2011.04.042
- 25 J. Gimbun, C. D. Rielly, Z. K. Nagy, Chem. Eng. Res. Des. 2009, 87 (4), 437. DOI: https://doi.org/10.1016/j.cherd.2008.12.017
- 26 X. Li, K. Scott, W. J. Kelly, Z. Huang, Biotechnol. Bioprocess Eng. 2018, 23 (6), 710. DOI: https://doi.org/10.1007/s12257-018-0063-5
- 27 J. Wutz, A. Lapin, F. Siebler, J. E. Schäfer, T. Wucherpfennig, M. Berger, R. Takors, Eng. Life Sci. 2016, 16 (7), 633. DOI: https://doi.org/10.1002/elsc.201500135
- 28 H. Azargoshasb, S. M. Mousavi, O. Jamialahmadi, S. A. Shojaosadati, S. B. Mousavi, Can. J. Chem. Eng. 2016, 94 (1), 20. DOI: https://doi.org/10.1002/cjce.22352
- 29 E. Askari, G. S.-P. Lemieux, P. Proulx, Can. J. Chem. Eng. 2019, in press. DOI: https://doi.org/10.1002/cjce.23470
- 30 P. V. Danckwerts, Ind. Eng. Chem. 1951, 43 (6), 1460. DOI: https://doi.org/10.1021/ie50498a055
- 31 K. E. Morud, B. H. Hjertager, Chem. Eng. Sci. 1996, 51 (2), 233. DOI: https://doi.org/10.1016/0009-2509(95)00270-7
- 32 A. R. Khopkar, V. V. Ranade, AIChE J. 2006, 52 (5), 1654. DOI: https://doi.org/10.1002/aic.10762
- 33 H. Sun, Z.-S. Mao, G. Yu, Chem. Eng. Sci. 2006, 61 (12), 4098. DOI: https://doi.org/10.1016/j.ces.2005.12.029
- 34 Z.-S. Mao, C. Yang, Ind. Eng. Chem. Res. 2006, 45 (3), 1141. DOI: https://doi.org/10.1021/ie0503085
- 35 F. Scargiali, A. D'Orazio, F. Grisafi, A. Brucato, Chem. Eng. Res. Des. 2007, 85 (5), 637. DOI: https://doi.org/10.1205/cherd06243
- 36 M. Jahoda, L. Tomášková, M. Moštěk, Chem. Eng. Res. Des. 2009, 87 (4), 460. DOI: https://doi.org/10.1016/j.cherd.2008.12.006
- 37 A. Sokolichin, G. Eigenberger, A. Lapin, AIChE J. 2004, 50 (1), 24. DOI: https://doi.org/10.1002/aic.10003
- 38ANSYS, ANSYS FLUENT.
- 39 C. P. Fonte, B. S. Pinho, V. Santos-Moreau, J. C. B. Lopes, Chem. Eng. Technol. 2014, 37 (4), 571. DOI: https://doi.org/10.1002/ceat.201300412
- 40 L. Schiller, Z. Naumann, Z. Ver. Dtsch. Ing. 1935, 77, 318.
- 41 T. Takamasa, A. Tomiyama, Proc. of the 1999 NURETH-9 Conf., San Francisco, October 1999.
- 42 A. Brucato, F. Grisafi, G. Montante, Chem. Eng. Sci. 1998, 53 (18), 3295. DOI: https://doi.org/10.1016/S0009-2509(98)00114-6
- 43 E. Doroodchi, G. M. Evans, M. P. Schwarz, G. L. Lane, N. Shah, A. Nguyen, Chem. Eng. J. 2008, 135 (1–2), 129.
- 44 G. Lane, M. P. Schwarz, G. M. Evans, Proc. of the 10th Eur. Conf. on Mixing, Delft, July 2000.
- 45 D. Pinelli, M. Nocentini, F. Magelli, Chem. Eng. Commun. 2007, 188 (1), 91. DOI: https://doi.org/10.1080/00986440108912898
- 46
P. Danckwerts, Ind. Eng. Chem.
2004, 43 (6), 1460.
10.1021/ie50498a055 Google Scholar
- 47 J. C. Lamont, D. S. Scott, AIChE J. 1970, 16 (4), 513. DOI: https://doi.org/10.1002/aic.690160403
- 48 C. R. Wilke, P. Chang, AIChE J. 1955, 1 (2), 264. DOI: https://doi.org/10.1002/aic.690010222
- 49 M. Coroneo, G. Montante, A. Paglianti, F. Magelli, Comput. Chem. Eng. 2011, 35 (10), 1959. DOI: https://doi.org/10.1016/j.compchemeng.2010.12.007
- 50 D. Zhang, N. G. Deen, J. A. M. Kuipers, Chem. Eng. Sci. 2006, 61 (23), 7593. DOI: https://doi.org/10.1016/j.ces.2006.08.053
- 51 G. Montante, K. C. Lee, A. Brucato, M. Yianneskis, Chem. Eng. Sci. 2001, 56 (12), 3751.
- 52 J. Aubin, D. F. Fletcher, C. Xuereb, Exp. Therm. Fluid Sci. 2004, 28 (5), 431. DOI: https://doi.org/10.1016/j.expthermflusci.2003.04.001