Numerical Characterization of the Bubble Rise Behavior in Viscoelastic Liquids
Corresponding Author
Frauke Enders
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Correspondence: Frauke Enders ([email protected]), Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany.Search for more papers by this authorDavid Merker
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorMarkus Kolano
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorLutz Böhm
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorMatthias Kraume
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorCorresponding Author
Frauke Enders
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Correspondence: Frauke Enders ([email protected]), Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany.Search for more papers by this authorDavid Merker
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorMarkus Kolano
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorLutz Böhm
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorMatthias Kraume
Technische Universität Berlin, Chair of Chemical & Process Engineering, Fraunhoferstrasse 33–36, 10587 Berlin, Germany
Search for more papers by this authorAbstract
The bubble rise behavior in viscoelastic media is analyzed numerically with CFD. Three different constitutive models, Giesekus, linear and exponential Phan-Thien-Tanner, are used to evaluate three different biopolymer solutions. The terminal rise velocity over a range of bubble sizes is validated against experimental data. The local velocity fields are compared with respect to the shape and onset of the negative wake. Furthermore, the normal and shear components of the stress fields, transformed according to the local flow direction, are given. The simulations are performed with a volume of fluid solver in OpenFOAM.
References
- 1 X. Frank, H. Z. Li, D. Funfschilling, F. Burdin, Y. Ma, Can. J. Chem. Eng. 2003, 81, 483–490. DOI: https://doi.org/10.1002/cjce.5450810321
- 2
H. Giesekus, Phänomenologische Rheologie: Eine Einführung, 1st ed., Springer-Verlag, Berlin
1994.
10.1007/978-3-642-57953-0 Google Scholar
- 3 O. Hassager, Nature 1979, 279 (5712), 402–403. DOI: https://doi.org/10.1038/279402a0
- 4 C. Pilz, G. Brenn, J. Non-Newtonian Fluid Mech. 2007, 145 (2–3), 124–138. DOI: https://doi.org/10.1016/j.jnnfm.2007.05.015
- 5 L. Böhm, Comparison of single bubble and bubble swarm behavior in narrow gaps inside flat sheet membrane modules, Ph.D. Thesis, Technische Universität Berlin 2015.
- 6 M. Kemiha, X. Frank, S. Poncin, H. Z. Li, Chem. Eng. Sci. 2006, 61 (12), 4041–4047. DOI: https://doi.org/10.1016/j.ces.2006.01.051
- 7 R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, 1st ed., Butterworth-Heinemann, Oxford 1988.
- 8 P. A. Stewart, N. Lay, M. Sussman, M. Ohta, J. Sci. Comput. 2008, 35 (1), 43–61. DOI: https://doi.org/10.1007/s10915-007-9173-5
- 9 S. J. Lind, T. N. Phillips, J. Non-Newtonian Fluid Mech. 2010, 165 (15–16), 852–865. DOI: https://doi.org/10.1016/j.jnnfm.2010.04.002
- 10 J. L. Favero, A. R. Secchi, N. S. M. Cardozo, H. Jasak, J. Non-Newtonian Fluid Mech. 2010, 165, 1625–1636. DOI: https://doi.org/10.1016/j.jnnfm.2010.08.010
- 11 F. Habla, A. Obermeier, O. Hinrichsen, J. Non-Newtonian Fluid Mech. 2013, 199, 70–79. DOI: https://doi.org/10.1016/j.jnnfm.2013.06.006
- 12 F. Habla, Modeling and CFD simulation of viscoelastic single and multiphase flows, Ph.D. Thesis, Technische Universität München 2015.
- 13 D. Fraggedakis, M. Pavlidis, Y. Dimakopoulos, J. Tsamopoulos, J. Fluid Mech. 2016, 789, 310–346. DOI: https://doi.org/10.1017/jfm.2015.740
- 14 J. L. Favero, N. S. M. Cardozo, A. R. Secchi, H. Jasak, Comput. Aided Chem. Eng. 2010, 28, 31–36. DOI: https://doi.org/10.1016/S1570-7946(10)28006-9
- 15 V. A. Aguirre, B. A. Castillo, C. P. Narvaez, Numerical simulation of a bubble rising in an environment consisting of Xanthan gum, AIP Conf. Proc. 2017, 1872 (1), 020022. DOI: https://doi.org/10.1063/1.4996679
- 16 M. Niethammer, B. Brenn, H. Marschall, D. Bothe, An Extended Volume of Fluid Method and its Application to Single Bubbles Rising in a Viscoelastic Liquid, Preprint 2018, arXiv:1806.04063.
- 17 H. G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys 1998, 12 (6), 620–631. DOI: https://doi.org/10.1063/1.168744
- 18 A. Albadawi, D. B. Donoghue, A. J. Robinson, D. B. Murray, Y. M. C. Delauré, Int. J. Multiphase Flow 2013, 53, 11–28. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005
- 19 H. Rusche, Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. Thesis, Imperial College London 2002.
- 20 J. U. Brackbill, D. B. Kothe, C. Zemach, J. Comput. Phys. 1992, 100 (2), 335–354. DOI: https://doi.org/10.1016/0021-9991(92)90240-Y
- 21 F. A. Morrison, Understanding rheology, 1st ed., Oxford University Press, New York 2001.
- 22 H. Giesekus, J. Non-Newtonian Fluid Mech. 1985, 17 (3), 349–372. DOI: https://doi.org/10.1016/0377-0257(85)80026-4
- 23 N. P. Thien, R. I. Tanner, J. Non-Newtonian Fluid Mech. 1977, 2 (4), 353–365. DOI: https://doi.org/10.1016/0377-0257(77)80021-9
- 24 D. Merker, L. Böhm, M. Oßberger, P. Klüfers, M. Kraume, Chem. Eng. Technol. 2017, 40 (8), 1391–1399. DOI: https://doi.org/10.1002/ceat.201600715
- 25 S. Wollny, Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in gerührten (Bio-)Reaktoren, Ph.D. Thesis, Technische Universität Berlin 2010.