Three-Dimensional Observation of Single Air Bubble Breakup in a Stirred Tank
Corresponding Author
Frederic Krakau
TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany
Correspondence: Frederic Krakau ([email protected]), TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany.Search for more papers by this authorMatthias Kraume
TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany
Search for more papers by this authorCorresponding Author
Frederic Krakau
TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany
Correspondence: Frederic Krakau ([email protected]), TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany.Search for more papers by this authorMatthias Kraume
TU Berlin, Chair of Chemical & Process Engineering, Ackerstrasse 76, 13355 Berlin, Germany
Search for more papers by this authorAbstract
A fully automated three-dimensional observation of single bubble breakup trajectories in a stirred tank is demonstrated to gain unbiased and statistically relevant information about the breakup process. The mother bubble size is kept constant, independently of the stirring rate. The investigated parameter in this work is the power input. Three-dimensional bubble breakup trajectories and heat maps for the initial breakup location probability for the bottom and side views are provided. The influence of the stirrer blade angle position, at the moment of bubble detachment from the capillary, on the breakup probability is analyzed. The breakup positions are linked to the current flow field, related to the stirrer blade angle, within the tank.
References
- 1 H. M. Hulburt, S. Katz, Chem. Eng. Sci. 1964, 19 (8), 555–574. DOI: https://doi.org/10.1016/0009-2509(64)85047-8
- 2 D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering, Academic Press, Amsterdam 2000.
- 3 J. Solsvik, H. A. Jakobsen, J. Dispersion Sci. Technol. 2015, 36 (4), 510–520. DOI: https://doi.org/10.1080/01932691.2014.909318
- 4 J. C. Lasheras, C. Eastwood, C. Martínez-Bazán, J. L. Montañés, Int. J. Multiphase Flow 2002, 28 (2), 247–278. DOI: https://doi.org/10.1016/S0301-9322(01)00046-5
- 5 Y. Liao, D. Lucas, Chem. Eng. Sci. 2009, 64 (15), 3389–3406. DOI: https://doi.org/10.1016/j.ces.2009.04.026
- 6 J. Solsvik, S. Tangen, H. A. Jakobsen, Rev. Chem. Eng. 2013, 29 (5). DOI: https://doi.org/10.1515/revce-2013-0009
- 7 S. Nachtigall, Analyse der Tropfendeformation und des Tropfenbruchs in turbulenter Strömung (in German), Ph.D. Thesis, Technische Universität Berlin, 2016.
- 8 C. A. Coulaloglou, L. L. Tavlarides, Chem. Eng. Sci. 1977, 32 (11), 1289–1297. DOI: https://doi.org/10.1016/0009-2509(77)85023-9
- 9 J. Solsvik, H. A. Jakobsen, Int. J. Chem. React. Eng. 2015, 13 (4), 109. DOI: https://doi.org/10.1515/ijcre-2014-0154.
- 10
F. Risso, Multiphase Sci. Technol.
2000, 12 (1), 50. DOI: https://doi.org/10.1615/MultScienTechn.v12.i1.10
10.1615/MultScienTechn.v12.i1.10 Google Scholar
- 11 J. Solsvik, S. Maaß, H. A. Jakobsen, Ind. Eng. Chem. Res. 2016, 55 (10), 2872–2882. DOI: https://doi.org/10.1021/acs.iecr.6b00591
- 12 S. Maass, S. Buscher, S. Hermann, M. Kraume, Biotechnol. J. 2011, 6 (8), 979–992. DOI: https://doi.org/10.1002/biot.201100161
- 13 S. Maaß, M. Kraume, Chem. Eng. Sci. 2012, 70, 146–164. DOI: https://doi.org/10.1016/j.ces.2011.08.027
- 14 J. Solsvik, H. A. Jakobsen, Chem. Eng. Sci. 2015, 131, 219–234. DOI: https://doi.org/10.1016/j.ces.2015.03.059
- 15 S. Maaß, N. Paul, M. Kraume, Chem. Eng. Sci. 2012, 76, 140–153. DOI: https://doi.org/10.1016/j.ces.2012.03.050
- 16 P. J. Becker, F. Puel, H. A. Jakobsen, N. Sheibat-Othman, Chem. Eng. Sci. 2014, 109, 326–338. DOI: https://doi.org/10.1016/j.ces.2014.02.008
- 17 P. J. Becker, F. Puel, Y. Chevalier, N. Sheibat-Othman, Can. J. Chem. Eng. 2014, 92 (2), 296–306. DOI: https://doi.org/10.1002/cjce.21885
- 18 M. Laakkonen, P. Moilanen, V. Alopaeus, J. Aittamaa, Chem. Eng. Sci. 2007, 62 (3), 721–740. DOI: https://doi.org/10.1016/j.ces.2006.10.006
- 19 K. K. Singh, S. M. Mahajani, K. T. Shenoy, S. K. Ghosh, Hydrometallurgy 2008, 90 (2–4), 121–136. DOI: https://doi.org/10.1016/j.hydromet.2007.10.003
- 20 C. A. Sleicher, AIChE J. 1962, 8 (4), 471–477. DOI: https://doi.org/10.1002/aic.690080410
- 21 J. E. Swartz, D. P. Kessler, AIChE J. 1970, 16 (2), 254–260. DOI: https://doi.org/10.1002/aic.690160218
- 22 S. B. Collins, J. G. Knudsen, AIChE J. 1970, 16 (6), 1072–1080. DOI: https://doi.org/10.1002/aic.690160634
- 23 J. F. Walter, H. W. Blanch, Chem. Eng. J. 1986, 32 (1), B7–B17. DOI: https://doi.org/10.1016/0300-9467(86)85011-0
- 24 R. P. Hesketh, A. W. Etchells, T. W. F. Russell, Ind. Eng. Chem. Res. 1991, 30 (5), 835–841. DOI: https://doi.org/10.1021/ie00053a005
- 25 J. S. Percy, C. A. Sleicher, AIChE J. 1983, 29 (1), 161–164. DOI: https://doi.org/10.1002/aic.690290125
- 26 G. Kolb, G. Wagner, J. Ulrich, Chem. Ing. Tech. 2001, 73 (1/2), 80–83. DOI: https://doi.org/10.1002/1522-2640(200101)73:1/2<80:AID-CITE80>3.0.CO;2-G
- 27 S. Galinat, O. Masbernat, P. Guiraud, C. Dalmazzone, C. Noïk, Chem. Eng. Sci. 2005, 60 (23), 6511–6528. DOI: https://doi.org/10.1016/j.ces.2005.05.012
- 28 S. Galinat, F. Risso, O. Masbernat, P. Guiraud, J. Fluid Mech. 2007, 578, 85. DOI: https://doi.org/10.1017/S0022112007005186
- 29 S. Galinat, L. Garrido Torres, O. Masbernat, P. Guiraud, F. Risso, C. Dalmazzone, C. Noik, AIChE J. 2007, 53 (1), 56–68. DOI: https://doi.org/10.1002/aic.11055
- 30 H. Bahmanyar, D. R. Dean, I. C. Dowling, K. M. Ramlochan, M. J. Slater, W. Yu, Chem. Eng. Technol. 1991, 14 (3), 178–185. DOI: https://doi.org/10.1002/ceat.270140305
- 31 K. Eid, C. Gourdon, G. Casamatta, G. Muratet, Chem. Eng. Sci. 1991, 46 (7), 1595–1608. DOI: https://doi.org/10.1016/0009-2509(91)87008-Z
- 32 C. Gourdon, G. Casamatta, Chem. Eng. Sci. 1991, 46 (11), 2799–2808. DOI: https://doi.org/10.1016/0009-2509(91)85149-R
- 33 M. Simon, S. Schmidt, H.-J. Bart, Chem. Ing. Tech. 2002, 74 (3), 247–256. DOI: https://doi.org/10.1002/1522-2640(200203)74:3<247:AID-CITE247>3.0.CO;2-B
- 34 M. Kuriyama, M. Ono, H. Tokanai, H. Konno, J. Chem. Eng. Jpn. 1995, 28 (4), 477–479. DOI: https://doi.org/10.1252/jcej.28.477
- 35 F. Risso, J. Fabre, J. Fluid Mech. 1998, 372, 323–355. DOI: https://doi.org/10.1017/S0022112098002705
- 36 C. Martínez-Bazán, J. L. Montañés, J. C. Lasheras, J. Fluid Mech. 1999, 401, 183–207. DOI: https://doi.org/10.1017/S0022112099006692
- 37 C. D. Eastwood, L. Armi, J. C. Lasheras, J. Fluid Mech. 1999, 502, 309–333. DOI: https://doi.org/10.1017/S0022112003007730
- 38 R. Andersson, B. Andersson, AIChE J. 2006, 52 (6), 2020–2030. DOI: https://doi.org/10.1002/aic.10831
- 39 S. Nachtigall, D. Zedel, M. Kraume, Chin. J. Chem. Eng. 2016, 24 (2), 264–277. DOI: https://doi.org/10.1016/j.cjche.2015.06.003
- 40 A. M. Ali, H. H. S. Yuan, D. S. Dickey, G. B. Tatterson, Chem. Eng. Commun. 1981, 10 (4/5), 205–213. DOI: https://doi.org/10.1080/00986448108910934
- 41 T. P. K. Chang, Y. H. E. Sheu, G. B. Tatterson, D. S. Dickey, Chem. Eng. Commun. 1981, 10 (4/5), 215–222. DOI: https://doi.org/10.1080/00986448108910935
- 42 M. Konno, M. Aoki, S. Saito, J. Chem. Eng. Jpn. 1983, 16 (4), 312–319. DOI: https://doi.org/10.1252/jcej.16.312
- 43 R. V. Calabrese, T. P. K. Chang, P. T. Dang, AIChE J. 1986, 32 (4), 657–666. DOI: https://doi.org/10.1002/aic.690320416
- 44 B. O. Hasan, F. Krakau, Int. J. Multiphase Flow 2018, 109, 259. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2018.07.011
- 45 B. O. Hasan, Exp. Therm. Fluid Sci. 2018, 96, 48–62. DOI: https://doi.org/10.1016/j.expthermflusci.2018.02.013
- 46 F. Krakau, M. Kraume, Chem. Ing. Tech. 2019, 91 (7), in press. DOI: https://doi.org/10.1002/cite.201800111