Influence of Liquid Density and Surface Tension on the Pinning of Sliding Droplets on a Triangular Microstructure
Corresponding Author
Henning Bonart
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Correspondence: Henning Bonart ([email protected]), Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany.Search for more papers by this authorJohannes Jung
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorChristian Kahle
Technische Universität München, Zentrum Mathematik, Boltzmannstrasse 3, 85748 Garching, Germany
Search for more papers by this authorJens-Uwe Repke
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorCorresponding Author
Henning Bonart
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Correspondence: Henning Bonart ([email protected]), Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany.Search for more papers by this authorJohannes Jung
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorChristian Kahle
Technische Universität München, Zentrum Mathematik, Boltzmannstrasse 3, 85748 Garching, Germany
Search for more papers by this authorJens-Uwe Repke
Technische Universität Berlin, Dynamik und Betrieb technischer Anlagen, Strasse des 17. Juni 135, 10623 Berlin, Germany
Search for more papers by this authorAbstract
Sliding droplets are crucial in many industrial applications. Examples are coating and separation processes involving multiple phases and liquid films. Often one can observe how a sliding droplet halts midstream on a solid surface. Wetting defects such as topographic structures can lead to a pinning of sliding droplets. In order to assess the influence of liquid density and surface tension on the pinning, direct numerical simulations are performed. After the model and its discretization are introduced, the solution is validated. Simulation results of gravity-driven droplets on inclined surfaces with structures in the size of the droplets are presented and the observed requirements for pinning a sliding droplet to a surface are discussed.
References
- 1 J. M. Encarnación Escobar, E. Dietrich, S. Arscott, H. J. W. Zandvliet, X. Zhang, D. Lohse, Langmuir 2018, 34 (19), 5396–5402. DOI: https://doi.org/10.1021/acs.langmuir.8b00256
- 2 W. Xu, C.-H. Choi, Phys. Rev. Lett. 2012, 109 (2), 024504. DOI: https://doi.org/10.1103/PhysRevLett.109.024504
- 3 J. W. Gibbs, The Scientific Papers, Vol. 1, Dover Publications, New York 1961.
- 4 D. C. Dyson, Phys. Fluids 1988, 31, 229–232. DOI: https://doi.org/10.1063/1.866851
- 5 J. F. Oliver, C. Huh, S. G. Mason, Colloid Interface Sci. 1977, 59 (3), 568–581. DOI: https://doi.org/10.1016/0021-9797(77)90052-2
- 6 U. Thiele, K. Neuffer, M. Bestehorn, Y. Pomeau, M. G. Velarde, Colloids Surf., A 2002, 206 (1–3), 87–104. DOI: https://doi.org/10.1016/S0927-7757(02)00082-1
- 7 D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 2009, 81 (2), 739–805. DOI: https://doi.org/10.1103/RevModPhys.81.739
- 8 H. Bonart, C. Kahle, J.-U. Repke, Comparison of Energy Stable Simulation of Moving Contact Line Problems using a Thermodynamically Consistent Cahn-Hilliard Navier-Stokes Model, Preprint, 2018, arXiv: 1809.06689.
- 9 E. B. Dussan, V. R. Chow, J. Fluid Mech. 1983, 137, 1–29. DOI: https://doi.org/10.1017/S002211208300227X
- 10 P. G. de Gennes, Rev. Mod. Phys. 1985, 57 (3), 827–863. DOI: https://doi.org/10.1103/RevModPhys.57.827
- 11 H. Ding, P. D. M. Spelt, J. Fluid Mech. 2008, 599, 341–362. DOI: https://doi.org/10.1017/S0022112008000190
- 12 D. 't Mannetje, S. Ghosh, R. Lagraauw, S. Otten, A. Pit, C. Berendsen, J. Zeegers, D. van den Ende, F. Mugele, Nat. Commun. 2014, 5 (1), 3559. DOI: https://doi.org/10.1038/ncomms4559
- 13 A. Cavalli, M. Musterd, F. Mugele, Phys. Rev. E 2015, 91 (2), 023013. DOI: https://doi.org/10.1103/PhysRevE.91.023013
- 14 N. Savva, S. Kalliadasis, J. Fluid Mech. 2013, 725, 462–491. DOI: https://doi.org/10.1017/jfm.2013.201
- 15 J. Park, S. Kumar, Langmuir 2017, 33 (29), 7352–7363. DOI: https://doi.org/10.1021/acs.langmuir.7b01716
- 16 J. H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 2013, 45 (1), 269–292. DOI: https://doi.org/10.1146/annurev-fluid-011212-140734
- 17 C. Huh, L. E. Scriven, J. Colloid Interface Sci. 1971, 35 (1), 85–101. DOI: https://doi.org/10.1016/0021-9797(71)90188-3
- 18 M. Renardy, Y. Renardy, L. Jie, J. Comput. Phys. 2001, 171 (1), 243–263. DOI: https://doi.org/10.1006/jcph.2001.6785
- 19 D. Jacqmin, J. Fluid Mech. 2000, 402, S0022112099006874. DOI: https://doi.org/10.1017/S0022112099006874
- 20 M. Wörner, Microfluidics Nanofluidics 2012, 12 (6), 841–886. DOI: https://doi.org/10.1007/s10404-012-0940-8
- 21 D. M. Anderson, G. B. McFadden, A. A. Wheeler, Annu. Rev. Fluid Mech. 1998, 30 (1), 139–165. DOI: https://doi.org/10.1146/annurev.fluid.30.1.139
- 22 P. Seppecher, Int. J. Eng. Sci. 1996, 34 (9), 977–992. DOI: https://doi.org/10.1016/0020-7225(95)00141-7
- 23 Q. He, K. Nobuhide, Fluid Dyn. Res. 2008, 40 (7–8), 497–509. DOI: https://doi.org/10.1016/j.fluiddyn.2008.01.002
- 24 F. Jamshidi, H. Heimel, M. Hasert, X. Cai, O. Deutschmann, H. Marschall, M. Wörner, Comput. Phys. Commun. 2018, 236, 72–85. DOI: https://doi.org/10.1016/j.cpc.2018.10.015
- 25 H. Abels, H. Garcke, G. Grün, Math. Model. Methods Appl. Sci. 2012, 22 (3), 1150013. DOI: https://doi.org/10.1142/S0218202511500138
- 26 G. Grün, F. Guillén-Gonzáles, S. Metzger, Commun. Comput. Phys. 2016, 19 (5), 1473–1502. DOI: https://doi.org/10.4208/cicp.scpde14.39s
- 27 J. Kim, Commun. Comput. Phys. 2012, 12 (3), 613–661. DOI: https://doi.org/10.4208/cicp.301110.040811a
- 28 D. Jacqmin, J. Comput. Phys. 1999, 155 (1), 96–127. DOI: https://doi.org/10.1006/jcph.1999.6332
- 29 M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells, Arch. Numer. Softw. 2015, 3 (100). DOI: https://doi.org/10.11588/ans.2015.100.20553
- 30 S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes, B. Smith, H. Zhang, PETSc Users Manual Revision 3.4, Argonne National Laboratory, Argonne, IL 2014. DOI: https://doi.org/10.2172/1178104
- 31 X. S. Li, ACM Trans. Math. Softw. 2005, 31 (3), 302–325. DOI: https://doi.org/10.1145/1089014.1089017
- 32 H. Bonart, J.-U. Repke, Chem. Eng. Trans. 2018, 69, 61–66. DOI: https://doi.org/10.3303/CET1869011
- 33 J.-B. Dupont, D. Legendre, J. Comput. Phys. 2010, 229 (7), 2453–2478. DOI: https://doi.org/10.1016/j.jcp.2009.07.034
- 34 X. Cai, H. Marschall, M. Wörner, O. Deutschmann, Chem. Eng. Technol. 2015, 38 (11), 1985–1992. DOI: https://doi.org/10.1002/ceat.201500089
- 35 H. B. Eral, D. J. C. M. 't Mannetje, J. M. Oh, Colloid Polym. Sci. 2013, 291 (2), 247–260. DOI: https://doi.org/10.1007/s00396-012-2796-6
- 36 B. Krasovitski, A. Marmur, Langmuir 2005, 21 (9), 3881–3885. DOI: https://doi.org/10.1021/la0474565