Quantitative Measurements of the Critical Impeller Speed for Solid-Liquid Suspensions
Guichuan Ye
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
China University of Mining and Technology School of Chemical and Environmental Engineering, 11 Xueyuan Road, 100083 Beijing, China
Search for more papers by this authorAlvin W. Nienow
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
Search for more papers by this authorCorresponding Author
Federico Alberini
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
Correspondence: Federico Alberini ([email protected]), University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom.Search for more papers by this authorGuichuan Ye
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
China University of Mining and Technology School of Chemical and Environmental Engineering, 11 Xueyuan Road, 100083 Beijing, China
Search for more papers by this authorAlvin W. Nienow
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
Search for more papers by this authorCorresponding Author
Federico Alberini
University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom
Correspondence: Federico Alberini ([email protected]), University of Birmingham, School of Chemical Engineering, Edgbaston Campus, B15 2TT Birmingham, United Kingdom.Search for more papers by this authorAbstract
A quantitative methodology for particle suspension assessment is presented. A new parameter, fmov/tot, the ratio of the mean number of moving particles to the total number of particles, is introduced to evaluate the minimum speed required to just suspend solids. This approach is tested to investigate the impact of impeller clearance on the minimum impeller speed, Njs, in a vessel when using a radial flow Rushton turbine. Flow patterns and power numbers obtained experimentally and computationally support the suspension findings. Image analysis is an appropriate method for determining Njs. Lowering the impeller clearance reduces the speed required for particle suspension with a change of flow pattern from a radial discharge with two loops to a single loop scouring the vessel base. The power number also falls markedly at the two-to-one loop transition as does the strain rate near the base.
References
- 1
A. Nienow, K. Coopman, T. Heathman, Q. Rafiq, C. Hewitt, in Stem Cell Manufacturing (Eds: J. M. S. Cabral, C. L. de Silva, L. G. Chase, D. M. M. Diogo), Elsevier Science, Cambridge
2016, 43–75.
10.1016/B978-0-444-63265-4.00003-0 Google Scholar
- 2 A. W. Nienow, Can. J. Chem. Eng. 1969, 47 (3), 248–258. DOI: https://doi.org/10.1002/cjce.5450470316
- 3 Mixing in the Process Industries, (Eds: A. W. Nienow, E. L. Paul), Wiley-Interscience, New York 2016, 665–728.
- 4 T. N. Zwietering, Chem. Eng. Sci. 1958, 8 (3–4), 244–253. DOI: https://doi.org/10.1016/0009-2509(58)85031-9
- 5 P. M. Armenante, E. U. Nagamine, Chem. Eng. Sci. 1998, 53 (9), 1757–1775. DOI: https://doi.org/10.1016/S0009-2509(98)00001-3
- 6 L. Liu, M. Barigou, Int. J. Multiphase Flow 2015, 73, 80–89. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2015.03.008
- 7 P. J. Ferreira, M. G. Rasteiro, M. M. Figueiredo, Adv. Powder Technol. 1994, 5 (1), 15–24. DOI: https://doi.org/10.1016/S0921-8831(08)60621-4
- 8 H. Yamazaki, K. Tojo, K. Miyanami, Powder Technol. 1986, 48 (3), 205–216. DOI: https://doi.org/10.1016/0032-5910(86)80043-2
- 9 M. V. Sardeshpande, G. Kumar, T. Aditya, V. V. Ranade, Flow Meas. Instrum. 2016, 47, 110–121. DOI: https://doi.org/10.1016/j.flowmeasinst.2016.01.003
- 10 G. Li, Z. Li, Z. Gao, J. Wang, Y. Bao, J. J. Derksen, Chem. Eng. Sci. 2018, 191, 288–299. DOI: https://doi.org/10.1016/j.ces.2018.06.073
- 11 L. Fan, N. Xu, Powder Technol. 2017, 316, 329–337. DOI: https://doi.org/10.1016/j.powtec.2016.10.065
- 12 P. Guiraud, J. Costes, J. Bertrand, Chem. Eng. J. 1997, 68 (2–3), 75–86. DOI: https://doi.org/10.1016/S1385-8947(97)00076-4
- 13 I. Ayranci, S. M. Kresta, Chem. Eng. Res. Des. 2014, 92 (3), 413–422. DOI: https://doi.org/10.1016/j.cherd.2013.09.005
- 14 S. Narayana, V. K. Bhatia, D. K. Guha, M. N. Rao, Chem. Eng. Sci. 1969, 24 (2), 223–230. DOI: https://doi.org/10.1016/0009-2509(69)80031-X
- 15 A. Brucato, V. Brucato, Can. J. Chem. Eng. 1998, 76 (3), 420–427. DOI: https://doi.org/10.1002/cjce.5450760311
- 16 D. Guha, P. A. Ramachandran, M. P. Dudukovic, Chem. Eng. Sci. 2007, 62 (22), 6143–6154. DOI: https://doi.org/10.1016/j.ces.2007.06.033
- 17 A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, Chem. Eng. J. 2012, 193–194, 234–255. DOI: https://doi.org/10.1016/j.cej.2012.04.044
- 18
R. Jafari, P. A. Tanguy, J. Chaouki, Int. J. Chem. Eng.
2012, 2012, 945314. DOI: https://doi.org/10.1155/2012/945314
10.1155/2012/945314 Google Scholar
- 19 M. Bohnet, G. Niesmak, Ger. Chem. Eng. 1980, 3, 57–65.
- 20 L. Musil, J. V. Jiroudková, Chem. Eng. Sci. 1984, 39 (4), 621–628. DOI: https://doi.org/10.1016/0009-2509(84)80168-2
- 21 C. Buurman, G. Resoort, A. Plaschkes, Chem. Eng. Sci. 1986, 41 (11), 2865–2871. DOI: https://doi.org/10.1016/0009-2509(86)80017-3
- 22 V. B. Rewatkar, K. S. M. S. Rao, J. B. Joshi, Ind. Eng. Chem. Res. 1991, 30, 1770–1784. DOI: https://doi.org/10.1021/ie00056a013
- 23 M. Kraume, Chem. Eng. Technol. 1992, 15, 313–318. DOI: https://doi.org/10.1002/ceat.270150505
- 24 A. Mersmann, F. Werner, S. Maurer, K. Bartosch, Chem. Eng. Process. 1998, 37, 503–510. DOI: https://doi.org/10.1016/S0255-2701(98)00057-9
- 25 G. Micale, V. Carrara, F. Grisafi, A. Brucato, Chem. Eng. Res. Des. 2000, 78 (3), 319–326. DOI: https://doi.org/10.1205/026387600527374
- 26
Y. Zhu, J. Wu, Can. J. Chem. Eng.
2002, 80 (4), 1–6. DOI: https://doi.org/10.1002/cjce.5450800417
10.1002/cjce.5450800417 Google Scholar
- 27 T. Jirout, J. Moravec, F. E. Rieger, V. Sinevič, M. Špidla, V. Sobolík, J. Tihon, Chem. Process Eng. 2005, 26, 485–497.
- 28 R. Congjing, J. Xiaojing, W. Jingdai, Y. Yongrong, Z. Xiaohuan, Ind. Eng. Chem. Res. 2008, 47 (15), 5323–5327. DOI: https://doi.org/10.1021/ie0714347
- 29 A. Brucato, A. Cipollina, G. Micale, F. Scargiali, A. Tamburini, Chem. Eng. Sci. 2010, 65 (10), 3001–3008. DOI: https://doi.org/10.1016/j.ces.2010.01.026
- 30 S. M. Naghavi, M. Ashrafizaadeh, 6th Int. Chemical Engineering Congr. & Exhib., Kish Island, November 2009.
- 31 B. Blais, O. Bertrand, L. Fradette, F. Bertrand, Chem. Eng. Res. Des. 2017, 123, 388–406. DOI: https://doi.org/10.1016/j.cherd.2017.05.021
- 32 B. Blais, M. Lassaigne, C. Goniva, L. Fradette, F. Bertrand, J. Comput. Phys. 2016, 318, 201–221. DOI: https://doi.org/10.1016/j.jcp.2016.05.008
- 33 A. W. Nienow, Chem. Eng. Sci. 1968, 23 (12), 1453–1459. DOI: https://doi.org/10.1016/0009-2509(68)89055-4
- 34 S. Ibrahim, A. W. Nienow, Chem. Eng. Res. Des. 1996, 74 (6), 679–688.
- 35 S. Ibrahim, A. W. Nienow, Chem. Eng. Res. Des. 1995, 73, 485–491.
- 36 G. Montante, K. C. Lee, A. Brucato, M. Yianneskis, Comput. Chem. Eng. 2001, 25 (4–6), 729–735. DOI: https://doi.org/10.1016/S0098-1354(01)00648-2
- 37 A. Ochieng, M. S. Onyango, A. Kumar, K. Kiriamiti, P. Musonge, Chem. Eng. Process. 2008, 47 (5), 842–851. DOI: https://doi.org/10.1016/j.cep.2007.01.034
- 38 P. M. Armenante, E. U. Nagamine, J. Susanto, Can. J. Chem. Eng. 1998, 76 (3), 413–419. DOI: https://doi.org/10.1002/cjce.5450760310
- 39 R. K. Grenville, A. T. C. Mak, D. A. R. Brown, Chem. Eng. Res. Des. 2015, 100, 282–291. DOI: https://doi.org/10.1016/j.cherd.2015.05.026
- 40 R. K. Grenville, J. J. Giacomelli, D. A. R. Brown, Chem. Eng. Res. Des. 2016, 109, 730–733. DOI: https://doi.org/10.1016/j.cherd.2016.03.024
- 41 C. M. Chapman, Ph.D. Thesis, University of London 1981.
- 42 I. Ayranci, M. B. Machado, A. M. Madej, J. J. Derksen, D. S. Nobes, S. M. Kresta, Chem. Eng. Sci. 2012, 79, 163–176. DOI: https://doi.org/10.1016/j.ces.2012.05.028
- 43 Y. Zhang, Z. Zhang, C. Wei, H. Wang, Chin. J. Chem. Eng. 2018, 26 (6), 1423–1429. DOI: https://doi.org/10.1016/j.cjche.2018.04.026
- 44 A. W. Nienow, D. Miles, Chem. Eng. J. 1978, 15 (1), 13–24.
- 45 A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, Chem. Eng. J. 2013, 223, 875–890. DOI: https://doi.org/10.1016/j.cej.2013.03.048
- 46 D. Wadnerkar, M. O. Tade, V. K. Pareek, R. P. Utikar, Particuology 2016, 29, 16–33. DOI: https://doi.org/10.1016/j.partic.2016.01.012
- 47 D. Wadnerkar, R. P. Utikar, M. O. Tade, V. K. Pareek, Adv. Powder Technol. 2012, 23 (4), 445–453. DOI: https://doi.org/10.1016/j.apt.2012.03.007
- 48 V. Santos-Moreau, L. Brunet-Errard, M. Rolland, Chem. Eng. J. 2012, 207–208, 596–606. DOI: https://doi.org/10.1016/j.cej.2012.07.020
- 49 N. Qi, H. Zhang, K. Zhang, G. Xu, Y. Yang, Particuology 2013, 11 (3), 317–326. DOI: https://doi.org/10.1016/j.partic.2012.03.003
- 50 A. Gabriele, A. N. Tsoligkas, I. N. Kings, M. J. H. Simmons, Chem. Eng. Sci. 2011, 66 (23), 5862–5874. DOI: https://doi.org/10.1016/j.ces.2011.08.007
- 51 F. Alberini, L. Liu, E. H. Stitt, M. J. H. Simmons, Chem. Eng. Sci. 2017, 171, 189–203. DOI: https://doi.org/10.1016/j.ces.2017.05.034
- 52 F. Scargiali, A. Tamburini, G. Caputo, G. Micale, Chem. Eng. Res. Des. 2017, 123, 99–110. DOI: https://doi.org/10.1016/j.cherd.2017.04.035
- 53 D. A. Deglon, C. J. Meyer, Miner. Eng. 2006, 19 (10), 1059–1068. DOI: https://doi.org/10.1016/j.mineng.2006.04.001
- 54 Z. Chara, B. Kysela, J. Konfrst, I. Fort, Appl. Math. Comput. 2016, 272 (3), 614–628. DOI: https://doi.org/10.1016/j.amc.2015.06.044