Minimum Cross Diameter for C6–C10 Aromatic Compounds
Corresponding Author
Jonathan C. Gonçalves
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Correspondence: Jonathan C. Gonçalves ([email protected]), University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.Search for more papers by this authorAlexandre F. P. Ferreira
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Search for more papers by this authorAlírio E. Rodrigues
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Search for more papers by this authorCorresponding Author
Jonathan C. Gonçalves
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Correspondence: Jonathan C. Gonçalves ([email protected]), University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.Search for more papers by this authorAlexandre F. P. Ferreira
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Search for more papers by this authorAlírio E. Rodrigues
University of Porto, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Search for more papers by this authorAbstract
The minimum cross diameter of organic species is highly important in catalyst and adsorbent design. In the aromatics industry, the size of the desired compound is the cornerstone of the commonly known shape-selective processes. In spite of the paramount importance of the said sizes, information in the literature is scarce and inconsistent. A thorough methodology was developed using the commercial software ChemBio3D Ultra. The minimum cross diameter of 21 aromatic compounds was calculated including benzene, toluene, ethylbenzene, xylene isomers, ethyltoluene isomers, diethylbenzene isomers, ethylxylene isomers, and trimethylbenzene isomers.
Supporting Information
Filename | Description |
---|---|
ceat201800406-sup-0001-misc_information.pdf3.9 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. A. Johnson, in Handbook of Petroleum Refining Processes, 3rd ed. (Ed: R. A. Meyers), McGraw-Hill, New York 2003.
- 2 A. A. Lidback, Aromatics Update, PEMEX foro, Mexico City, June 2012.
- 3 W. J. Cannella, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York 2000.
- 4 A. Kareem, S. Chand, I. M. Mishra, J. Sci. Ind. Res. 2001, 60 (4), 319–327.
- 5 J. Das, Y. S. Bhat, A. B. Halgeri, Ind. Eng. Chem. Res. 1994, 33 (2), 246–250. DOI: https://doi.org/10.1021/ie00026a011
- 6 W. Alabi, L. Atanda, R. Jermy, S. Al-Khattaf, Chem. Eng. J. 2012, 195–196, 276–288. DOI: https://doi.org/10.1016/j.cej.2012.04.100
- 7
S. Kulprathipanja, R. B. James, in Zeolites in Industrial Separation and Catalysis, 1st ed. (Ed: S. Kulprathipanja), Wiley-VCH, Weinheim
2010.
10.1002/9783527629565 Google Scholar
- 8 K. Griesbaum, A. Behr, D. Biedenkapp, H.-W. Voges, D. Garbe, C. Paetz, G. Collin, D. Mayer, H. Höke, in Ullmann's Encyclopedia of Industrial Chemistry, 7th ed. (Ed: B. Elvers), Wiley-VCH, Weinheim 2014.
- 9
Handbook of Heterogeneous Catalysis (Eds: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp), Wiley-VCH, Weinheim
2008.
10.1002/9783527610044 Google Scholar
- 10 N. Arsenova-Härtel, H. Bludau, R. Schumacher, W. O. Haag, H. G. Karge, E. Brunner, U. Wild, J. Catal. 2000, 191 (2), 326–331. DOI: https://doi.org/10.1006/jcat.1999.2800
- 11 J. L. Amos, K. E. Coulter, US Patent , 1952. 2 763 702
- 12 W. W. Kaeding, L. B. Young, C.-C. Chu, J. Catal. 1984, 89 (2), 267–273. DOI: https://doi.org/10.1016/0021-9517(84)90304-X
- 13 A. D. Rudkovskii, V. G. Teteruk, K. G. Chesnovitskii, M. I. Koroleva, A. D. Sulimov, Chem. Technol. Fuels Oils 1982, 18 (8), 387–391. DOI: https://doi.org/10.1007/bf00731619
- 14 V. R. Choudhary, V. S. Nayak, T. V. Choudhary, Ind. Eng. Chem. Res. 1997, 36 (5), 1812–1818. DOI: https://doi.org/10.1021/ie960411h
- 15 J. Liu, M. Dong, Z. Sun, Z. Qin, J. Wang, Colloids Surf., A 2004, 247 (1), 41–45. DOI: https://doi.org/10.1016/j.colsurfa.2004.08.031
- 16 S. M. Csicsery, J. Catal. 1970, 19 (3), 394–397. DOI: https://doi.org/10.1016/0021-9517(70)90264-2
- 17 S. Prakash, Advanced Chemistry of Rare Elements, 3rd ed., Chemical Publishing Company Inc., Boston, MA 1967.
- 18 Q. Shi, J. C. Gonçalves, A. F. P. Ferreira, A. E. Rodrigues, Experimental Study of Isomerization for p-Xylene Production in a Simulated Moving Bed Reactor, CAMURE-10 and ISMR-9, Qingdao, China, July 2017.
- 19 W. W. Kaeding, G. C. Barile, M. M. Wu, Catal. Rev. 1984, 26 (3–4), 597–612. DOI: https://doi.org/10.1080/01614948408064727
- 20 U. Weiß, M. Weihe, M. Hunger, H. Karge, J. Weitkamp, Stud. Surf. Sci. Catal. 1997, 105, 973–980. DOI: https://doi.org/10.1016/S0167-2991(97)80729-X
- 21 R. D. Chirico, W. V. Steele, J. Chem. Eng. Data 1997, 42 (4), 784–790. DOI: https://doi.org/10.1021/je970030q
- 22 J. C. Gonçalves, A. E. Rodrigues, J. Chem. Eng. Data 2013, 58 (6), 1425–1428. DOI: https://doi.org/10.1021/je400318z
- 23 Q. Shi, J. C. Gonçalves, A. F. P. Ferreira, M. G. Plaza, A. E. Rodrigues, Appl. Catal., A 2018, 562, 198–205. DOI: https://doi.org/10.1016/j.apcata.2018.06.011
- 24 S. M. Waziri, A. M. Aitani, S. Al-Khattaf, Ind. Eng. Chem. Res. 2010, 49 (14), 6376–6387. DOI: https://doi.org/10.1021/ie100527x
- 25 D. S. Santilli, J. Catal. 1986, 99 (2), 327–334. DOI: https://doi.org/10.1016/0021-9517(86)90357-X
- 26 J. M. Silva, M. F. Ribeiro, F. Ramôa Ribeiro, E. Benazzi, M. Guisnet, Appl. Catal., A 1995, 125 (1), 1–14. DOI: https://doi.org/10.1016/0926-860X(94)00261-4
- 27 J. M. Silva, M. F. Ribeiro, F. Ramôa Ribeiro, E. Benazzi, M. Guisnet, Appl. Catal., A 1995, 125 (1), 15–27. DOI: https://doi.org/10.1016/0926-860X(94)00259-2.