Reactive Zinc Extraction with D2EHPA in a Kühni Miniplant Column
Christian Korb
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Search for more papers by this authorAlexander Keller
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Correspondence: Hans-Jörg Bart ([email protected]), Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany.Search for more papers by this authorChristian Korb
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Search for more papers by this authorAlexander Keller
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany
Correspondence: Hans-Jörg Bart ([email protected]), Technische Universität Kaiserslautern, Chair of Separation Science and Technology, Gottlieb-Daimler-Strasse 44, 67651 Kaiserslautern, Germany.Search for more papers by this authorAbstract
Reactive extraction of Zn2+ with di-(2-ethylhexyl) phosphoric acid (D2EHPA) was examined in a multistage countercurrent extraction column of type Kühni. Hydrodynamics and mass transfer for the reactive European Federation of Chemical Engineering (EFCE) test system were comprehensively experimentally investigated in a DN32 Kühni miniplant column. The experiments demonstrate that the column hydrodynamics and mass transfer performance markedly depend on throughputs, phase ratio, energy input as well as on the component concentrations. Using a simple equilibrium stage model, it was found that two to four stages per meter can be reached in the miniplant extractor. The system physical properties (density, viscosity, interfacial tension) of the reactive test system change rapidly due to mass transfer, which is considered by appropriate correlations.
References
- 1 M. Mansur, M. Slater, E. Biscaia, Hydrometallurgy 2002, 63 (2), 117–126. DOI: https://doi.org/10.1016/S0304-386X(01)00211-0
- 2 H.-J. Bart, Chem. Eng. Sci. 2002, 57 (9), 1633–1637. DOI: https://doi.org/10.1016/S0009-2509(02)00040-4
- 3 H.-J. Bart, M. J. Slater, Standard Test System for Reactive Extraction – Zinc/D2EHPA, http://processnet.org/Literatur-p-366.html 2001 (Accessed on April 18, 2018)
- 4 M. Mansur, M. Slater, E. Biscaia, Hydrometallurgy 2002, 63 (2), 107–116. DOI: https://doi.org/10.1016/S0304-386X(01)00210-9
- 5 B. S. Morais, M. B. Mansur, Hydrometallurgy 2004, 74 (1–2), 11–18. DOI: https://doi.org/10.1016/j.hydromet.2003.10.013
- 6 C. I. Sainz-Diaz, H. Klocker, R. Marr, H. J. Bart, Hydrometallurgy 1996, 42 (1), 1–11. DOI: https://doi.org/10.1016/0304-386X(95)00075-R
- 7 J. Aparicio, M. Muhammed, Hydrometallurgy 1989, 21 (3), 385–399. DOI: https://doi.org/10.1016/0304-386X(89)90010-8
- 8 H. Bart, R. Marr, J. Scheks, M. Koncar, Hydrometallurgy 1992, 31 (1–2), 13–28. DOI: https://doi.org/10.1016/0304-386X(92)90105-9
- 9 H.-J. Bart, H.-P. Rousselle, Hydrometallurgy 1999, 51 (1), 285–298. DOI: https://doi.org/10.1016/S0304-386X(98)00082-6
- 10 H.-J. Bart, G. W. Stevens, in Ion Exchange and Solvent Extraction: A Series of Advances, Volume 17 (Eds: J. A. Marinsky, A. K. SenGupta, Y. Marcus), CRC Press, Boca Raton, FL 2004.
- 11 H. W. Brandt, K.-H. Reissinger, J. Schröter, Chem. Ing. Tech. 1978, 50 (5), 345–354. DOI: https://doi.org/10.1002/cite.330500505
- 12 T. Pilhofer, J. Schröter, Chem. Ing. Tech. 1984, 56 (12), 883–890. DOI: https://doi.org/10.1002/cite.330561202
- 13 M. Y. Altunok, M. Kalem, A. Pfennig, AIChE J. 2012, 58 (5), 1346–1355. DOI: https://doi.org/10.1002/aic.12680
- 14 M. Mörters, H.-J. Bart, Chem. Eng. Process. 2003, 42 (10), 801–809. DOI: https://doi.org/10.1016/S0255-2701(02)00106-X
- 15 M. Kalem, M. Y. Altunok, A. Pfennig, AIChE J. 2010, 56 (1), 160–167. DOI: https://doi.org/10.1002/aic.11976
- 16 J. Ji, K. H. Mensforth, J. M. Perera, G. W. Stevens, Hydrometallurgy 2006, 84 (3–4), 139–148. DOI: https://doi.org/10.1016/j.hydromet.2006.03.062
- 17 M. B. Mansur, M. J. Slater, E. C. Biscaia Jr, Ind. Eng. Chem. Res. 2003, 42 (17), 4068–4076. DOI: https://doi.org/10.1021/ie020883y
- 18 H.-J. Bart, Chem. Eng. Technol. 2003, 26 (7), 723–731. DOI: https://doi.org/10.1002/ceat.200306102
- 19 A. Pereira Neto, M. B. Mansur, Chem. Eng. Res. Des. 2013, 91 (12), 2323–2332. DOI: https://doi.org/10.1016/j.cherd.2013.05.014
- 20 S. Sarkar, C. J. Mumford, C. R. Phillips, Ind. Eng. Chem. Process Des. Dev. 1980, 19 (4), 672–679.
- 21 H.-J. Bart, C. Drumm, M. M. Attarakih, Chem. Eng. Process. 2008, 47 (5), 745–754. DOI: https://doi.org/10.1016/j.cep.2007.11.005
- 22 S. A. Schmidt, M. Simon, H.-J. Bart, Chem. Ing. Tech. 2003, 75 (1–2), 62–68. DOI: https://doi.org/10.1002/cite.200390023
- 23 M. Mörters, Dissertation, TU Kaiserslautern 2000.
- 24 E. A. Fouad, Chem. Eng. Technol. 2008, 31 (3), 370–376. DOI: https://doi.org/10.1002/ceat.200700433
- 25 A. M. Sastre, M. Muhammed, Hydrometallurgy 1984, 12 (2), 177–193. DOI: https://doi.org/10.1016/0304-386X(84)90033-1
- 26 S. Raatz, P. Klapper, Hydrometallurgy 2013, 134, 19–25. DOI: https://doi.org/10.1016/j.hydromet.2013.01.007
- 27 C. Korb, H.-J. Bart, Hydrometallurgy 2017, 173, 71–79. DOI: https://doi.org/10.1016/j.hydromet.2017.08.009
- 28 P. Kolb, Dissertation, TU Kaiserslautern 2004.
- 29 J. T. Steinmetz, Dissertation, TU Kaiserslautern 2007.
- 30 R. Marr, Chem. Ing. Tech. 1978, 50 (5), 337–344. DOI: https://doi.org/10.1002/cite.330500504
- 31 S. C. Jones, Dissertation, University of Michigan, Ann Arbor, MI 1962.
- 32 M. Asadollahzadeh, M. Torab-Mostaedi, S. Shahhosseini, A. Ghaemi, Chem. Eng. Res. Des. 2016, 105, 177–187. DOI: https://doi.org/10.1016/j.cherd.2015.11.019
- 33 A. Kumar, S. Hartland, Ind. Eng. Chem. Res. 1995, 34 (11), 3925–3940. DOI: https://doi.org/10.1021/ie00038a032
- 34 A. Kumar, S. Hartland, Ind. Eng. Chem. Res. 1996, 35 (8), 2682–2695. DOI: https://doi.org/10.1021/ie950674w
- 35 A. Mersmann, Chem. Ing. Tech. 1980, 52 (12), 933–942. DOI: https://doi.org/10.1002/cite.330521203