Colorimetric Methods for Determining Fe, V, and Ni Contents in Coke and Anodes
Hang Sun
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorCorresponding Author
Duygu Kocaefe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Correspondence: Duygu Kocaefe ([email protected]), University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, Chicoutimi (Quebec) G7H 2B1, Canada.Search for more papers by this authorDipankar Bhattacharyay
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorYasar Kocaefe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorJules Côté
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorPatrick Coulombe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorHang Sun
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorCorresponding Author
Duygu Kocaefe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Correspondence: Duygu Kocaefe ([email protected]), University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, Chicoutimi (Quebec) G7H 2B1, Canada.Search for more papers by this authorDipankar Bhattacharyay
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorYasar Kocaefe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorJules Côté
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorPatrick Coulombe
University of Quebec at Chicoutimi, UQAC Research Chair on Industrial Materials (CHIMI), 555, boul. de l'Université, G7H 2B1 Chicoutimi (Quebec), Canada
Search for more papers by this authorAbstract
Prebaked carbon anodes are used in the electrolytic production of aluminum. They are made of petroleum coke, butts, recycled anodes, and coal tar pitch. The anode quality, which depends on the raw material quality and the production conditions, has an important impact on the cell performance. Metallic impurities (V, Ni, and Fe) found in cokes and anodes increase the carbon consumption by catalyzing the air and CO2 reactivities. In turn, this increases the production cost, energy consumption, and the emission of greenhouse gases. The current methods for detecting the metallic impurities in carbon are time consuming and require intensive sample preparation, skilled personnel, and costly reagents. In this work, simple, rapid, and effective tools were developed using colorimetric methods.
References
- 1 K. L. Hulse, Anode Manufacture: Raw Materials, Formulation and Processing Parameters, R & D Carbon Ltd., Sierre 2000.
- 2 S. Bonnamy, A. Oberlin, Carbon 1982, 20 (6), 499–504. DOI: https://doi.org/10.1016/0008-6223(82)90086-0
- 3 T. Eidet, M. Sorlie, J. Thonstad, Light Metals 1997, 511–517.
- 4 M. R. Casada, J. Rolle, A. J. Edmond, S. Romero, D. Hester, Z. DeMori, J. Turpial, J. Mora, E. Epstein, D. Pirolo, J. Velasco, Light Metals 1997, 489–495.
- 5 R. M. de Souza, A. L. Saraceno, C. Duyck, C. L. P. da Silveira, R. Q. Aucélio, Microchem. J. 2007, 87 (2), 99–103. DOI: https://doi.org/10.1016/j.microc.2007.06.001
- 6 H. J. Van de Wiel, Determination of Elements by ICP-AES and ICP-MS, National Institute of Public Health and the Environment (RIVM), Bilthoven 2003.
- 7 L. Poirier, J. Nelson, D. Leong, L. Berhane, P. Hajdu, F. Lopez-Linares, Energy Fuels 2016, 30 (5), 3783–3790.
- 8 N. Ojeda, E. D. Greaves, J. Alvarado, L. Sajo-Bohus, Spectrochim. Acta, Part B 1993, 48 (2), 247–253. DOI: https://doi.org/10.1016/0584-8547(93)80030-X
- 9 C. Hardaway, J. Sneddon, J. N. Beck, Anal. Lett. 2004, 37 (14), 2881–2899. DOI: https://doi.org/10.1081/AL-200035776
- 10 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci. 2011, 257, 2717–2730.
- 11 N. Moonrungsee, S. Pencharee, J. Jakmunee, Talanta 2015, 136, 204–209. DOI: https://doi.org/10.1016/j.talanta.2015.01.024
- 12 J. Yun, H. Choi, Talanta 2000, 52 (5), 893–902. DOI: https://doi.org/10.1016/S0039-9140(00)00441-0
- 13
M. K. Muir, T. N. Andersen, Metall. Trans. B
1977, 8 (2), 517–518. DOI: https://doi.org/10.1007/BF02696942
10.1007/BF02696942 Google Scholar
- 14 J. Braunschweig, J. Bosch, K. Heister, C. Kuebeck, R. U. Meckenstock, J. Microbiol. Methods 2012, 89 (1), 41–48. DOI: https://doi.org/10.1016/j.mimet.2012.01.021
- 15 L. G. Saywell, B. B. Cunningham, Ind. Eng. Chem. 1937, 9 (2), 67–69. DOI: https://doi.org/10.1021/ac50106a005
- 16 R. E. Kitson, Anal. Chem. 1950, 22 (5), 664–667. DOI: https://doi.org/10.1021/ac60041a012
- 17 M. E. Beyer, A. M. Bond, R. J. W. McLaughlin, Anal. Chem. 1975, 47 (3), 479–482. DOI: https://doi.org/10.1021/ac60353a022
- 18 C. M. G. Van den Berg, Z. Q. Huang, J. Electroanal. Chem. 1984, 177 (1/2), 269–280. DOI: https://doi.org/10.1016/0022-0728(84)80228-4
- 19
M. Krasiejko, Z. Marczenko, Mikrochim. Acta
1975, 63 (5/6), 585–596. DOI: https://doi.org/10.1007/BF01217320
10.1007/BF01217320 Google Scholar
- 20 J. Mortatti, F. J. Krug, L. C. R. Pessenda, E. A. G. Zagatto, S. S. Jorgensen, Analyst 1982, 107, 659–663. DOI: https://doi.org/10.1039/AN9820700659
- 21 A. N. Adams, J. P. Mathews, H. H. Schobert, Light Metals 2002, 545–552.
- 22 J. W. Dieker, W. E. Van der Linden, Anal. Chim. Acta 1980, 114 (C), 267–274.
- 23 T. P. Lynch, N. J. Kernoghan, J. N. Wilson, Analyst 1984, 109, 843–846. DOI: https://doi.org/10.1039/an9840900843
- 24 K. Goto, T. Komatsu, T. Furukawa, Anal. Chim. Acta 1962, 27 (C), 335–338. DOI: https://doi.org/10.1016/S0003-2670(00)88510-4
- 25 L. Hu, L. Nie, G. Xu, H. Shi, X. Xu, X. Zhang, Z. Yan, RSC Adv. 2014, 4 (37), 19370–19374. DOI: https://doi.org/10.1039/C4RA00512K
- 26 K. N. Tran, A. J. Berkovich, A. Tomsett, S. K. Bhatia, Energy Fuels 2009, 23 (4), 1909–1924. DOI: https://doi.org/10.1021/ef8009519
- 27 S. C. Shome, Analyst 1950, 75, 27–32. DOI: https://doi.org/10.1039/an9507500027
- 28 U. Priyadarshini, S. G. Tandon, Anal. Chem. 1961, 33 (3), 435–438. DOI: https://doi.org/10.1021/ac60171a040
- 29 E. B. Sandell, Ind. Eng. Chem. 1936, 8 (5), 336–341.
- 30 J. J. Lingane, H. Kerlinger, Ind. Eng. Chem. 1941, 13 (2), 77–80. DOI: https://doi.org/10.1021/i560090a006
- 31 C. J. Flora, E. Nieboer, Anal. Chem. 1980, 52 (7), 1013–1020. DOI: https://doi.org/10.1021/ac50057a005
- 32 F. O. Tartarotti, M. F. de Oliveira, V. R. Balbo, N. R. Stradiotto, Microchim. Acta 2006, 155 (3/4), 397–401. DOI: https://doi.org/10.1007/s00604-006-0638-2
- 33 R. C. Perruchoud, M. W. Meier, W. Fischer, Light Metals 2003, 509–517.
- 34 E. R. McHenry, J. T. Baron, W. E. Saver, Light Metals 1994, 525–533.