Generation of Coarse Bubbles and Flow Instability Control by Means of a Bubble Generator
Inna Levitsky
Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, 84100 Beer-Sheva, Israel
Ben-Gurion University of the Negev, Unit of Environmental Engineering, PO Box 653, 84105 Beer-Sheva, Israel
Search for more papers by this authorVitaly Gitis
Ben-Gurion University of the Negev, Unit of Energy Engineering, PO Box 653, 84105 Beer-Sheva, Israel
Search for more papers by this authorCorresponding Author
Dorith Tavor
Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, 84100 Beer-Sheva, Israel
Correspondence: Dorith Tavor ([email protected]), Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, Beer-Sheva 84100, Israel.Search for more papers by this authorInna Levitsky
Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, 84100 Beer-Sheva, Israel
Ben-Gurion University of the Negev, Unit of Environmental Engineering, PO Box 653, 84105 Beer-Sheva, Israel
Search for more papers by this authorVitaly Gitis
Ben-Gurion University of the Negev, Unit of Energy Engineering, PO Box 653, 84105 Beer-Sheva, Israel
Search for more papers by this authorCorresponding Author
Dorith Tavor
Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, 84100 Beer-Sheva, Israel
Correspondence: Dorith Tavor ([email protected]), Shamoon College of Engineering, Department of Chemical Engineering, Green Processes Center, PO Box 950, Beer-Sheva 84100, Israel.Search for more papers by this authorAbstract
A previously studied bubble generator was tested under new operating conditions to provide for millimeter-sized bubbles. The basic element of the generator is a vortex chamber with water supplied through tangential ducts while gas (air) is introduced in the radial direction. Bubbles with average diameter of 0.5–2.2 mm were produced and registered by high-speed photography. The correlation between the water-air flow rate ratio and the characteristic bubble diameter was established and described by a relationship. Pressure oscillations in the exit section of the device were captured for two-phase flows with fine and coarse bubbles. With a view to applications in membrane filtration and water treatment, the effect of a pin installed in the exit section of the vortex chamber on the pressure oscillations was studied. The pin results in a drastic increase in pressure amplitude, both in the flow without bubbles and in the case of gas supply.
References
- 1 T. M. Qaisrani, W. M. Samhaber, Desalination 2011, 266 (1–3), 154–161. DOI: https://doi.org/10.1016/j.desal.2010.08.019
- 2 B. Riesmeier, K. H. Kroner, M. R. Kula, J. Biotechnol. 1989, 12 (2), 153–171. DOI: https://doi.org/10.1016/0168-1656(89)90013-8
- 3 Z. F. Cui, K. I. T. Wright, J. Membr. Sci. 1996, 117 (1–2), 109–116. DOI: https://doi.org/10.1016/0376-7388(96)00040-3.
- 4 M. Mercier-Bonin, C. Lagane, C. Fonade, J. Membr. Sci. 2000, 180 (1), 93–102. DOI: https://doi.org/10.1016/S0376-7388(00)00520-2
- 5 Z. F. Cui, S. Chang, A. G. Fane, J. Membr. Sci. 2003, 221 (1–2), 1–35. DOI: https://doi.org/10.1016/S0376-7388(03)00246-1
- 6 Z. Cui, T. Taha, J. Chem. Technol. Biotechnol. 2003, 78 (2–3), 249–253. DOI: https://doi.org/10.1002/jctb.763
- 7 Y. Wibisono, E. R. Cornelissen, A. J. B. Kemperman, W. G. J. Van der Meer, K. Nijmeijer, J. Membr. Sci. 2014, 453, 566–602. DOI: https://doi.org/10.1016/j.memsci.2013.10.072
- 8 G. N. Vatai, D. M. Krstic, W. Höflinger, A. K. Koris, M. N. Tekic, Desalination 2007, 204 (1–3), 255–264. DOI: https://doi.org/10.1016/j.desal.2006.02.034
- 9 M. Hemmati, F. Rekabdar, A. Gheshlaghi, A. Salahi, T. Mohammadi, Desalin. Water Treat. 2012, 39 (1–3), 33–40. DOI: https://doi.org/10.1080/19443994.2012.669155
- 10 Y. Lu, Z. Ding, L. Liu, Z. Wang, R. Ma, Sep. Purif. Technol. 2008, 61 (1), 89–95. DOI: https://doi.org/10.1016/j.seppur.2007.09.019
- 11 J. Y. Tian, Y. P. Xu, Z. L. Chen, J. Nan, G. B. Li, Desalination 2010, 260 (1–3), 225–230. DOI: https://doi.org/10.1016/j.desal.2010.04.026
- 12 I. Yamanoi, K. Kageyama, J. Membr. Sci. 2010, 360 (1–2), 102–108. DOI: https://doi.org/10.1016/j.memsci.2010.05.006
- 13 Y. Wibisono, E. R. Cornelissen, A. J. B. Kemperman, W. G. J. van der Meer, K. Nijmeijer, J. Membr. Sci. 2014, 453, 566–602. DOI: https://doi.org/10.1016/j.memsci.2013.10.072
- 14 Q. Y. Li, Z. F. Cui, D. S. Pepper, Chem. Eng. J. 1997, 67 (1), 71–75. DOI: https://doi.org/10.1016/S1385-8947(97)00016-8
- 15
K. Tabei, S. Haruyama, S. Yamaguchi, H. Shirai, F. Takakusagi, J. Environ. Eng.
2007, 2 (1), 172–182. DOI: https://doi.org/10.1299/jee.2.172
10.1299/jee.2.172 Google Scholar
- 16 A. Baylar, F. Ozkan, Environ. Fluid Mech. 2006, 6 (4), 341–357. DOI: https://doi.org/10.1007/s10652-005-5664-9
- 17 R. Parmar, S. K. Majumder, Chem. Eng. Process. 2013, 64, 79–97. DOI: https://doi.org/10.1016/j.cep.2012.12.002
- 18 W. B. Zimmerman, V. Tesar, J. Mesto, US Patent , 2013. 0092.626 A1
- 19 W. B. Zimmerman, J. Humberto, L. Parada, US Patent , 2014. 8734727 B2
- 20 W. B. Zimmerman, B. N. Hewakandamby, V. Tesar, H. C. H. Bandulasena, O. A. Omotawa, Food Bioprod. Process. 2009, 87, 215–227. DOI: https://doi.org/10.1016/j.fbp.2009.03.006
- 21 J. Hanotu, H. C. H. Bandulasena, T. Y. Chiu, W. B. Zimmerman, Int. J. Multiphase Flow 2013, 56, 119–125. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.05.012
- 22 W. B. Zimmerman, V. Tesaf, S. Butler, H. C. H. Bandulasena, Recent Pat. Eng. 2008, 2, 1–8. DOI: https://doi.org/10.2174/187221208783478598
- 23 A. M. Thomas, A. Jain, Sep. Sci. Technol. 2007, 42 (9), 1931–1944. DOI: https://doi.org/10.1080/01496390701401337
- 24 H. R. Millward, B. J. Bellhouse, G. Walker, J. Membr. Sci. 1995, 106 (3), 269–279. DOI: https://doi.org/10.1016/0376-7388(95)00092-Q
- 25 B. J. Bellhouse, I. J. Sobey, S. Alani, B. M. DeBlois, Bioseparation 1994, 4 (2), 127–138.
- 26 D. Kaufhold, F. Kopf, C. Wolff, S. Beutel, L. Hilterhaus, M. Hoffmann, T. Scheper, M. Schlüter, A. Liese, J. Membr. Sci. 2012, 423, 342–347. DOI: https://doi.org/10.1016/j.memsci.2012.08.035
- 27 W. Blel, P. Legentilhomme, T. Benezech, J. Legrand, C. Le Gentil-Lelievre, J. Food Eng. 2009, 90 (4), 433–440. DOI: https://doi.org/10.1016/j.jfoodeng.2008.07.019
- 28 J. A. Howell, R. W. Field, D. Wu, J. Membr. Sci. 1993, 80 (1), 59–71. DOI: https://doi.org/10.1016/0376-7388(93)85132-G
- 29 B. B. Gupta, B. Zaboubi, M. Y. Jaffrin, J. Membr. Sci. 1993, 80 (1), 13–20. DOI: https://doi.org/10.1016/0376-7388(93)85128-J
- 30 P. Blanpain-Aveta, N. Doubrovineb, C. Lafforgueb, M. Lalande, J. Membr. Sci. 1999, 152 (2), 151–174. DOI: https://doi.org/10.1016/S0376-7388(98)00214-2
- 31 B. B. Gupta, P. Blanpain, M. Y. Jaffrin, J. Membr. Sci. 1992, 70 (2–3), 257–266. DOI: https://doi.org/10.1016/0376-7388(92)80111-V
- 32 C. Rodrigues, M. Rodrigues, V. Semiao, V. Geraldes, Chem. Eng. Sci. 2015, 123, 536–541. DOI: https://doi.org/10.1016/j.ces.2014.11.047
- 33 E. Käske, US Patent , 2005. 6 962 169
- 34 C. Maranges, C. Fonade, J. Membr. Sci. 1997, 123 (1), 1–8. DOI: https://doi.org/10.1016/S0376-7388(96)00175-5
- 35 B. Gupta, P. Blanpain, M. Jaffrin, J. Membr. Sci. 1992, 70, 257–266. DOI: https://doi.org/10.1016/0376-7388(92)80111-V
- 36 I. Levitsky, D. Tavor, V. Gitis, Chem. Eng. Technol. 2016, 39 (8), 1537–1544. DOI: https://doi.org/10.1002/ceat.201500492
- 37 V. Gitis, I. Levitsky, D. Tavor, US Patent , 2018. 9 868 094
- 38 Y. I. Khavkin, Theory and Practice of Swirl Atomizers, Taylor & Francis, New York 2003.
- 39 J. J. Chinn, Atomization Sprays 2009, 19 (3), 283–308. DOI: https://doi.org/10.1615/AtomizSpr.v19.i3.50.
- 40 L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford 1966.
- 41 M. Levitsky, Y. Berkovich, SITA J. 2004, 6, 151–158.
- 42 S. Szepessy, P. W. Bearman, J. Fluid Mech. 1992, 234, 191–217. DOI: https://doi.org/10.1017/S0022112092000752
- 43
Y. Levy, V. Sherbaum, D. Levin, V. Ovcharenko, Proc. ASME Turbo Expo 2005: Power for Land, Sea, and Air, ASME, Reno 2005, 1, 905–911. DOI: https://doi.org/10.1115/GT2005-68314
10.1115/GT2005-68314 Google Scholar
- 44 S. E. Burns, S. Yiacoumi, C. Tsouris, Sep. Purif. Technol. 1997, 11 (3), 221–232. DOI: https://doi.org/10.1016/S1383-5866(97)00024-5
- 45 A. Breña de la Rosa, S. V. Sankar, B. J. Weber, G. Wang, W. D. Bachalo, J. Fluids Eng. 1991, 113 (3), 460–468. DOI: https://doi.org/10.1115/1.2909518.
- 46 L. Klingenberg, Frequency Domain Using Excel, San Francisco State University School of Engineering, 2005.
- 47 T. Fu, Y. Ma, D. Funfschilling, H. Z. Li, Chem. Eng. Sci. 2009, 64 (10), 2392–2400. DOI: https://doi.org/10.1016/j.ces.2009.02.022
- 48 T. Cubaud, M. Tatineni, X. Zhong, C. M. Ho, Phys. Rev. E 2005, 72 (3), 037302. DOI: https://doi.org/10.1103/PhysRevE.72.037302
- 49 A. M. Gañán-Calvo, J. M. Gordillo, Phys. Rev. Lett. 2001, 87 (27), 274501. DOI: https://doi.org/10.1103/PhysRevLett.87.274501
- 50 Z. Jalilvand, F. Z. Ashtiani, A. Fouladitajar, H. Rezaei, J. Membr. Sci. 2014, 450, 207–214. DOI: https://doi.org/10.1016/j.memsci.2013.09.008