Facile CO2 Separation in Composite Membranes
Sidra Saqib
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Sikander Rafiq
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Correspondence: Sikander Rafiq ([email protected], [email protected]), Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.Search for more papers by this authorMuhammad Chawla
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMuhammad Saeed
Electron Microscopy Laboratory at Department of Oral Biology, University of Oslo (UiO), 0316 Oslo, Norway
Search for more papers by this authorNawshad Muhammad
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorShahzad Khurram
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorKhaliq Majeed
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorAsim Laeeq Khan
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMoinuddin Ghauri
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMuhammad Aslam
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorSidra Saqib
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Sikander Rafiq
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Correspondence: Sikander Rafiq ([email protected], [email protected]), Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.Search for more papers by this authorMuhammad Chawla
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMuhammad Saeed
Electron Microscopy Laboratory at Department of Oral Biology, University of Oslo (UiO), 0316 Oslo, Norway
Search for more papers by this authorNawshad Muhammad
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorShahzad Khurram
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorKhaliq Majeed
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorAsim Laeeq Khan
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMoinuddin Ghauri
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorFarrukh Jamil
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorMuhammad Aslam
Department of Chemical Engineering, COMSATS University Islamabad, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
Search for more papers by this authorAbstract
CO2 emission from anthropogenic sources has raised worldwide environmental concerns and hence proficient energy paradigm has tilted towards CO2 capture. Membrane technology is one of the efficient technologies for CO2 separation since it is environmentally friendly, inexpensive, and offers high surface areas. Various approaches are discussed to improve membrane performance focusing mainly on permeability and selectivity parameters. Different types of fillers are incorporated to reach the Robeson's upper bound curve. In this review, polymer-inorganic nanocomposite membranes for the separation of CO2, CH4, and N2 from various gas mixtures are comprehensively discussed. Metal organic frameworks (MOFs) and ionic liquid (ILs) mixed-matrix membranes are also considered.
Supporting Information
Filename | Description |
---|---|
ceat201700653-sup-0001-misc_information.pdf151.5 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 E. Tzimas, A. Georgakaki, Energy Policy 2010, 38 (8), 4252–4264.
- 2 J. J. McCarthy, Climate Change 2001, Cambridge University Press, Cambridge 2001.
- 3 B. C. O'Neill, M. Oppenheimer, Science 2002, 296 (5575), 1971–1972.
- 4 A. Yamasaki, J. Chem. Eng. Jpn. 2003, 36 (4), 361–375.
- 5www.esrl.noaa.gov/gmd/ccgg/trends/
- 6 A. F. Ghoniem, Prog. Energy Combust. Sci. 2011, 37 (1), 15–51.
- 7 T. Kuramochi, A. Ramirez, W. Turkenburg, A. Faaij, Prog. Energy Combust. Sci. 2012, 38 (1), 87–112.
- 8 L. M. Robeson, J. Membr. Sci. 1991, 62 (2), 165–185.
- 9 L. M. Robeson, W. F. Burgoyne, M. Langsam, A. C. Savoca, C. F. Tien, Polymer 1994, 35 (23), 4970–4978.
- 10 J. Abanades et al., Int. J. Greenhouse Gas Control 2015, 40, 126–166.
- 11 K. Zhou, S. Chaemchuen, F. Verpoort, Renewable Sustainable Energy Rev. 2017, 79, 1414–1441.
- 12 N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Chem. Soc. Rev. 2015, 44 (20), 7128–7154.
- 13 D. Andirova, C. F. Cogswell, Y. Lei, S. Choi, Microporous Mesoporous Mater. 2016, 219, 276–305.
- 14 S. I. Plasynski, Z.-Y. Chen, Prepr. Pap. – Am. Chem. Soc., Div. Fuel Chem. 2000, 45 (4), 644–649
- 15 P. D. Bergman, E. M. Winter, Z.-Y. Chen, Energy Convers. Manage. 1997, 38, S211–S216.
- 16 D. W. Bailey, P. H. M. Feron, Oil Gas Sci. Technol. 2005, 60 (3), 461–474.
- 17 G. S. Booras, S. C. Smelser, Energy 1991, 16 (11–12), 1295–1305.
- 18 A. Aroonwilas, P. Tontiwachwuthikul, Energy Convers. Manage. 1997, 38, S75–S80.
- 19 S.-L. Wee, C.-T. Tye, S. Bhatia, Sep. Purif. Technol. 2008, 63 (3), 500–516. DOI: https://doi.org/10.1016/j.seppur.2008.07.010
- 20 J. D. Wind, D. R. Paul, W. J. Koros, J. Membr. Sci. 2004, 228 (2), 227–236. DOI: https://doi.org/10.1016/j.memsci.2003.10.011
- 21 M. Pera-Titus, Chem. Rev. 2014, 114 (2), 1413–1492.
- 22 L. J. Lozano, C. Godinez, A. P. De Los Rios, F. J. Hernandez-Fernandez, S. Sanchez-Segado, F. J. Alguacil, J. Membr. Sci. 2011, 376 (1), 1–14.
- 23 M. Muhammad, F. Y. Yin, L. C. Thiam, K. L. Kok, Chem. Eng. Technol. 2018, 41 (2), 235–252. DOI: https://doi.org/10.1002/ceat.201700327
- 24 N. Nadia, Y. Pacharaporn, F. Kajornsak, C. Tawatchai, K. Chalida, Chem. Eng. Technol. 2018, 41 (2), 211–223. DOI: https://doi.org/10.1002/ceat.201700406
- 25
S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Pat. Chem. Eng.
2008, 1 (1), 52–66.
10.2174/2211334710801010052 Google Scholar
- 26 H. Bai, W. S. W. Ho, Ind. Eng. Chem. Res. 2008, 48 (5), 2344–2354. DOI: https://doi.org/10.1021/ie800507r
- 27 A. S. Kovvali, H. Chen, G. Obuskovic, S. Majumdar, K. K. Sirkar, Prepr. Pap. – Am. Chem. Soc., Div. Fuel Chem. 2000, 45 (4), 665–667.
- 28 J. Y. Park, D. R. Paul, J. Membr. Sci. 1997, 125 (1), 23–39.
- 29 W. J. Koros, Macromol. Symp. 2002, 188, 13–22.
- 30 S. Rafiq, Z. Man, F. Ahmad, S. Maitra, Interceram 2010, 59, 341–349.
- 31 B. Freeman, Y. Yampolskii, Membrane Gas Separation, John Wiley & Sons, New York 2010.
- 32 X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, G. Stevens, J. Membr. Sci. 2007, 294 (1–2), 40–49. DOI: https://doi.org/10.1016/j.memsci.2007.02.004
- 33 A. L. Khan, X. Li, I. F. J. Vankelecom, J. Membr. Sci. 2011, 380 (1–2), 55–62. DOI: https://doi.org/10.1016/j.memsci.2011.06.030
- 34 H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356 (6343), eaab0530.
- 35 M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Pérez, M. S. Rana, Sep. Purif. Technol. 2017, 188, 431–450.
- 36 C. Zhang, K. Zhang, L. Xu, Y. Labreche, B. Kraftschik, W. J. Koros, AIChE J. 2014, 60 (7), 2625–2635.
- 37 A. Fernández-Barquín, C. Casado-Coterillo, M. Etxeberria-Benavides, J. Zuñiga, A. Irabien, Chem. Eng. Technol. 2017, 40 (5), 997–1007.
- 38 S. Rafiq, L. Deng, M.-B. Hägg, ChemBioEng Rev. 2016, 3 (2), 68–85. DOI: https://doi.org/10.1002/cben.201500013
- 39 B. Van der Bruggen, J. Appl. Polym. Sci. 2009, 114 (1), 630–642.
- 40 Z. Wang, T. Chen, J. Xu, Macromolecules 2000, 33 (15), 5672–5679.
- 41 W. Koros, M. Hellums, Fluid Phase Equilib. 1989, 53, 339–354.
- 42
S. Morooka, K. Kusakabe, Mater. Res. Bull.
1999, 23, 25–29.
10.1557/S0883769400051873 Google Scholar
- 43 H.-K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis, Chem. Mater. 2004, 16 (20), 3838–3845.
- 44 P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 2009, 48 (10), 4638–4663.
- 45 T. Ogoshi, H. Itoh, K.-M. Kim, Y. Chujo, Macromolecules 2002, 35 (2), 334–338.
- 46 B. M. Novak, Adv. Mater. 1993, 5 (6), 422–433.
- 47 H. Cong, M. Radosz, B. F. Towler, Y. Shen, Sep. Purif. Technol. 2007, 55 (3), 281–291. DOI: https://doi.org/10.1016/j.seppur.2006.12.017
- 48 C. F. Li, H. Q. Shao, S. H. Zhong, Progr. Chem. 2004, 16 (1), 83–89.
- 49 I. Genne, S. Kuypers, R. Leysen, J. Membr. Sci. 1996, 113 (2), 343–350.
- 50 N. M. Wara, L. F. Francis, B. V. Velamakanni, J. Membr. Sci. 1995, 104 (1–2), 43–49.
- 51 R. Stephen, C. Ranganathaiah, S. Varghese, K. Joseph, S. Thomas, Polymer 2006, 47 (3), 858–870.
- 52 R. H. Brzesowsky, G. De With, S. Van den Cruijsem, I. J. M. Snijkers-Hendrickx, W. A. M. Wolter, J. G. van Lierop, J. Non-Cryst. Solids 1998, 241 (1), 27–37.
- 53 J. L.C. Sanchez, J. Non-Cryst. Solids 1992, 145, 11–19.
- 54 A. Kioul, L. Mascia, J. Non-Cryst. Solids 1994, 175 (2–3), 169–186.
- 55 M. Smaihi, T. Jermoumi, J. Marignan, R. D. Noble, J. Membr. Sci. 1996, 116 (2), 211–220.
- 56 H. Zou, S. Wu, J. Shen, Chem Rev. 2008, 108 (9), 3893–3957. DOI: https://doi.org/10.1021/cr068035q
- 57 K. Kusakabe, K. Ichiki, J.-i. Hayashi, H. Maeda, S. Morooka, J. Membr. Sci. 1996, 115 (1), 65–75. DOI: https://doi.org/10.1016/0376-7388(95)00290-1
- 58 M. Moaddeb, W. J. Koros, J. Membr. Sci. 1997, 125, 143–163.
- 59 C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, M. Escoubes, J. Membr. Sci. 1997, 130(1), 63–74.
- 60 M. Smaihi, J.-C. Schrotter, C. Lesimple, I. Prevost, C. Guizard, J. Membr. Sci. 1999, 161 (1), 157–170.
- 61 R. Tamaki, Y. Chujo, K. Kuraoka, T. Yazawa, J. Mater. Chem. 1999, 9 (8), 1741–1746.
- 62 C. Hibshman, C. J. Cornelius, E. Marand, J. Membr. Sci. 2003, 211 (1), 25–40.
- 63 C. Cornelius, C. Hibshman, E. Marand, Sep. Purif. Technol. 2001, 25 (1), 181–193.
- 64 J. H. Kim, Y. M. Lee, J. Membr. Sci. 2001, 193 (2), 209–225. DOI: https://doi.org/10.1016/S0376-7388(01)00514-2
- 65 J. Ahn, W. J. Chung, I. Pinnau, M. D. Guiver, J. Membr. Sci. 2008, 314 (1), 123–133.
- 66 M. Sadeghi et al., J. Membr. Sci. 2008, 322 (2), 423–428. DOI: https://doi.org/10.1016/j.memsci.2008.05.077
- 67 Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, G. Wilkes, J. Membr. Sci. 1997, 135 (1), 65–79.
- 68 Y. Kong et al., Desalination 2002, 146 (1–3), 49–55.
- 69 J. Ahmad, K. Deshmukh, M. B. Hågg, Int. J. Polym. Anal. Charact. 2013, 18 (4), 287–296.
- 70 H. Cong, J. Zhang, M. Radosz, Y. Shen, J. Membr. Sci. 2007, 294 (1), 178–185.
- 71
B. Van der Bruggen, ISRN Nanotechnol.
2012, 2012, 693485.
10.5402/2012/693485 Google Scholar
- 72 M. F. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339 (6119), 535–539.
- 73 B. Yu, H. Cong, Z. Li, J. Tang, X. S. Zhao, J. Appl. Polym. Sci. 2013, 130 (4), 2867–2876.
- 74 R. S. Murali, S. Sridhar, T. Sankarshana, Y. V. L. Ravikumar, Ind. Eng. Chem. Res. 2010, 49 (14), 6530–6538.
- 75 M. Chi et al., Integr. Ferroelectr. 2015, 164 (1), 136–144.
- 76 H. Sun, T. Wang, Y. Xu, W. Gao, P. Li, Q. J. Niu, Sep. Purif. Technol. 2017, 177, 327–336.
- 77 A. R. Moghadassi, Z. Rajabi, S. M. Hosseini, M. Mohammadi, Sep. Sci. Technol. 2013, 48 (8), 1261–1271.
- 78 M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2010, 361 (1), 28–37.
- 79 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211 (2), 311–334. DOI: https://doi.org/10.1016/S0376-7388(02)00429-5
- 80 T.-S. Chung, S. S. Chan, R. Wang, Z. Lu, C. He, J. Membr. Sci. 2003, 211 (1), 91–99. DOI: https://doi.org/10.1016/S0376-7388(02)00385-X
- 81 A. M. W. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 2008, 314 (1), 193–199.
- 82 Y. Li, H..M. Guan, T..S. Chung, S. Kulprathipanja, J. Membr. Sci. 2006, 275 (1), 17–28.
- 83 Y. Li, T.-S. Chung, S. Kulprathipanja, AIChE J. 2007, 53, 610–616. DOI: https://doi.org/10.1002/aic.11109
- 84 M. Saeed, S. Rafiq, L. H. Bergersen, L. Deng, Sep. Purif. Technol. 2017, 179, 550–560. DOI: https://doi.org/10.1016/j.seppur.2017.02.022
- 85 M. Saeed, L. Deng, Int. J. Greenhouse Gas Control 2016, 53, 254–262. DOI: https://doi.org/10.1016/j.ijggc.2016.08.017
- 86 J. Ahmad, M. B. Hågg, J. Membr. Sci. 2013, 445, 200–210. DOI: https://doi.org/10.1016/j.memsci.2013.04.052
- 87 H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341 (6149), 1230444. DOI: https://doi.org/10.1126/science.1230444
- 88 S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem., Int. Ed. 2004, 43 (18), 2334–2375. DOI: https://doi.org/10.1002/anie.200300610
- 89 C. Janiak, J. K. Vieth, New J. Chem. 2010, 34 (11), 2366–2388. DOI: https://doi.org/10.1039/C0NJ00275E
- 90 S.-i. Noro, S. Kitagawa, M. Yamashita, T. Wada, Chem. Commun. 2002, 3, 222–223. DOI: https://doi.org/10.1039/B108695B
- 91 F. Nouar, J. Eckert, J. F. Eubank, P. Forster, M. Eddaoudi, J. Am. Chem. Soc. 2009, 131 (8), 2864–2870. DOI: https://doi.org/10.1021/ja807229a
- 92 H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nat. Mater. 2007, 6 (7), 501–506.
- 93 J. Y. Lee, J. M. Roberts, O. K. Farha, A. A. Sarjeant, K. A. Scheidt, J. T. Hupp, Inorg. Chem. 2009, 48 (21), 9971–9973. DOI: https://doi.org/10.1021/ic901174p
- 94 J. A. Bohrman, M. A. Carreon, Chem. Commun. 2012, 48 (42), 5130–5132. DOI: https://doi.org/10.1039/c2cc31821k
- 95 X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41 (18), 6010–6022. DOI: https://doi.org/10.1039/C2CS35157A
- 96 P. Kumar, A. Deep, K.-H. Kim, TrAC, Trends Anal. Chem. 2015, 73, 39–53. DOI: https://doi.org/10.1016/j.trac.2015.04.009
- 97 M. Eddaoudi et al., Science 2002, 295 (5554), 469–472. DOI: https://doi.org/10.1126/science.1067208
- 98 R. Babarao, Z. Hu, J. Jiang, S. Chempath, S. I. Sandler, Langmuir 2007, 23 (2), 659–666. DOI: https://doi.org/10.1021/la062289p
- 99 E. Adatoz, A. K. Avci, S. Keskin, Sep. Purif. Technol. 2015, 152, 207–237. DOI: https://doi.org/10.1016/j.seppur.2015.08.020
- 100 M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, H.-K. Jeong, Ind. Eng. Chem. Res. 2012, 51 (5), 2179–2199. DOI: https://doi.org/10.1021/ie202038m
- 101 S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43 (16), 6116–6140. DOI: https://doi.org/10.1039/C4CS00159A
- 102 Y.-S. Li, H. Bux, A. Feldhoff, G.-L. Li, W.-S. Yang, J. Caro, Adv. Mater. 2010, 22 (30), 3322–3326. DOI: https://doi.org/10.1002/adma.201000857
- 103 Y. Li, F. Liang, H. Bux, W. Yang, J. Caro, J. Membr. Sci. 2010, 354, 48–54. DOI: https://doi.org/10.1016/j.memsci.2010.02.074
- 104 S. R. Venna, M. A. Carreon, J. Am. Chem. Soc. 2010, 132 (1), 76–78. DOI: https://doi.org/10.1021/ja909263x
- 105 Y. Yoo, V. Varela-Guerrero, H.-K. Jeong, Langmuir 2011, 27 (6), 2652–2657. DOI: https://doi.org/10.1021/la104775d
- 106
J. Wang, J. Luo, S. Feng, H. Li, Y. Wan, X. Zhang, Green Energy Environ.
2016, 1 (1), 43–61.
10.1016/j.gee.2016.05.002 Google Scholar
- 107 Z. Dai, R. D. Noble, D. L. Gin, X. Zhang, L. Deng, J. Membr. Sci. 2016, 497, 1–20.
- 108 J. Albo et al., Sep. Purif. Technol. 2012, 97, 26–33.
- 109 M. Ramdin, T. W. de Loos, T. J. Vlugt, Ind. Eng. Chem. Res. 2012, 51 (24), 8149–8177.
- 110 J. E. Bara, S. Lessmann, C. J. Gabriel, E. S. Hatakeyama, R. D. Noble, D. L. Gin, Ind. Eng. Chem. Res. 2007, 46 (16), 5397–5404.
- 111 J. E. Bara et al., J. Membr. Sci. 2008, 321 (1), 3–7.
- 112 J. E. Bara, R. D. Noble, D. L. Gin, Ind. Eng. Chem. Res. 2009, 48 (9), 4607–4610.
- 113 Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, R. D. Noble, J. Membr. Sci. 2010, 350 (1), 117–123.
- 114 Z. Liu, C. Liu, L. Li, W. Qin, A. Xu, Int. J. Greenhouse Gas Control 2016, 53, 79–84.
- 115 P. Jindaratsamee, Y. Shimoyama, H. Morizaki, A. Ito, J. Chem. Thermodyn. 2011, 43 (3), 311–314.
- 116 Y.-I. Park, B.-S. Kim, Y.-H. Byun, S.-H. Lee, E.-W. Lee, J.-M. Lee, Desalination 2009, 236 (1–3), 342–348.
- 117 S. M. Mahurin, J. S. Lee, G. A. Baker, H. Luo, S. Dai, J. Membr. Sci. 2010, 353 (1), 177–183.
- 118 T. M. Gür, J. Membr. Sci. 1994, 93 (3), 283–289. DOI: https://doi.org/10.1016/0376-7388(94)00102-2
- 119 R. Mahajan, C. M. Zimmerman, W. J. Koros, ACS Symp. Ser. 1999, 733, 277–286.
- 120 I. F. J. Vankelecom, E. Merckx, M. Luts, J. B. Uytterhoeven, J. Phys. Chem. 1995, 99 (35), 13187–13192. DOI: https://doi.org/10.1021/j100035a023
- 121 M. Sandru, T.-J. Kim, W. Capala, M. Huijbers, M. B. Hägg, Energy Procedia 2013, 37, 6473–6480. DOI: https://doi.org/10.1016/j.egypro.2013.06.577
- 122 M. Washim Uddin, M.-B. Hägg, J. Membr. Sci. 2012, 423–424, 150–158. DOI: https://doi.org/10.1016/j.memsci.2012.08.011
- 123 M. Washim Uddin, M-B. Hägg, J. Membr. Sci. 2012, 423–424, 143–149. DOI: https://doi.org/10.1016/j.memsci.2012.08.010
- 124 B. Freeman, Y. Yampolskii, Membrane Gas Separation, John Wiley & Sons, New York 2011.
- 125 T. Suzuki, Y. Yamada, Polym. Bull. 2005, 53 (2), 139–146. DOI: https://doi.org/10.1007/s00289-004-0322-9
- 126 X. Hu, H. Cong, Y. Shen, M. Radosz, Ind. Eng. Chem. Res. 2007, 46 (5), 1547–1551. DOI: https://doi.org/10.1021/ie061055y
- 127 M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Sep. Purif. Technol. 2012, 86, 41–48. DOI: https://doi.org/10.1016/j.seppur.2011.10.018
- 128 C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, M. Escoubes, J. Membr. Sci. 1997, 130 (1–2), 63–74. DOI: https://doi.org/10.1016/S0376-7388(97)00008-2
- 129 H. B. Park, J. K. Kim, S. Y. Nam, Y. M. Lee, J. Membr. Sci. 2003, 220 (1–2), 59–73. DOI: https://doi.org/10.1016/S0376-7388(03)00215-1
- 130 H. Cong, X. Hu, M. Radosz, Y. Shen, Ind. Eng. Chem. Res. 2007, 46 (8), 2567–2575.
- 131 H. Kim, C. Lim, S. I. Hong, J. Sol-Gel Sci. Technol. 2005, 36, 213–221.
- 132 M. L. Sforca, I. V. P. Yoshida, S. P. Nunes, J. Membr. Sci. 1999, 159 (1), 197–207.
- 133 S. Kim, L. Chen, J. K. Johnson, E. Marand, J. Membr. Sci. 2007, 294 (1–2), 147–158. DOI: https://doi.org/10.1016/j.memsci.2007.02.028
- 134 H. H. Yong, H. C. Park, Y. S. Kang, J. Won, W. N. Kim, J. Membr. Sci. 2001, 188 (2), 151–163. DOI: https://doi.org/10.1016/S0376-7388(00)00659-1
- 135 S. Husain, W. J. Koros, J. Membr. Sci. 2007, 288 (1–2), 195–207. DOI: https://doi.org/10.1016/j.memsci.2006.11.016
- 136 M. R. Khdhayyer et al., Sep. Purif. Technol. 2017, 173, 304–313. DOI: https://doi.org/10.1016/j.seppur.2016.09.036
- 137 K. Xie et al., J. Membr. Sci. 2017, 535, 350–356. DOI: https://doi.org/10.1016/j.memsci.2017.04.022
- 138 A. Car, C. Stropnik, K.-V. Peinemann, Desalination 2006, 200 (1), 424–426. DOI: https://doi.org/10.1016/j.desal.2006.03.390
- 139 Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, W. J. Koros, J. Membr. Sci. 2012, 401–402, 76–82. DOI: https://doi.org/10.1016/j.memsci.2012.01.044
- 140 E. V. Perez, K. J. Balkus Jr, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2009, 328 (1–2), 165–173. DOI: https://doi.org/10.1016/j.memsci.2008.12.006
- 141 Q. Song et al., Energy Environ. Sci. 2012, 5 (8), 8359–8369. DOI: https://doi.org/10.1039/C2EE21996D
- 142 M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Chem. Eng. Process. 2010, 49 (4), 313–322.
- 143 P. Scovazzo, J. Membr. Sci. 2009, 343 (1), 199–211.
- 144 S. M. Mahurin, P. C. Hillesheim, J. S. Yeary, D.-e. Jiang, S. Dai, RSC Adv. 2012, 2 (31), 11813–11819.
- 145 Y. Gu, T. P. Lodge, Macromolecules 2011, 44 (7), 1732–1736.
- 146 L. A. Neves, J. G. Crespo, I. M. Coelhoso, J. Membr. Sci. 2010, 357 (1), 160–170.
- 147 P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. DuBois, R. Noble, J. Membr. Sci. 2004, 238 (1), 57–63.
- 148 L. C. Tomé, D. Mecerreyes, C. S. Freire, L. P. N. Rebelo, I. M. Marrucho, J. Membr. Sci. 2013, 428, 260–266.
- 149 P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S. Suen, J. Membr. Sci. 2011, 383 (1), 262–271.
- 150 R. Ur Rehman et al., J. Appl. Polym. Sci. 2017, 134 (44), 45395–45406.
- 151 Y. Jiang, W. Youting, W. Wenting, L. Lei, Z. Zheng, Z. Zhang, Chin. J. Chem. Eng. 2009, 17 (4), 594–601.
- 152www.mtrinc.com/research.html (Accessed on December 10, 2015)
- 153www.medal.airliquide.com/en/co-membrane/co-membrane-technology.html (Accessed on December 10, 2015)