Noninvasive 4D Flow Characterization in a Stirred Tank via Phase-Contrast Magnetic Resonance Imaging
Gábor Janiga
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorDaniel Stucht
Otto von Guericke University, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
Otto von Guericke University, Institute of Biometry and Medical Informatics, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorRóbert Bordás
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Erik Temmel
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
Correspondence: Erik Temmel ([email protected]), Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.Search for more papers by this authorAndreas Seidel-Morgenstern
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
Search for more papers by this authorDominique Thévenin
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorOliver Speck
Otto von Guericke University, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
Search for more papers by this authorGábor Janiga
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorDaniel Stucht
Otto von Guericke University, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
Otto von Guericke University, Institute of Biometry and Medical Informatics, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorRóbert Bordás
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Erik Temmel
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
Correspondence: Erik Temmel ([email protected]), Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.Search for more papers by this authorAndreas Seidel-Morgenstern
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
Search for more papers by this authorDominique Thévenin
Otto von Guericke University, Laboratory of Fluid Dynamics and Technical Flows, Universitätsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorOliver Speck
Otto von Guericke University, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
Search for more papers by this authorAbstract
A noninvasive quantification of the hydrodynamics in a stirred tank in space and time using flow-sensitive phase-contrast magnetic resonance imaging (PC-MRI) at 7 Tesla (7 T) is demonstrated. The PC-MRI technique is able to characterize the unsteady periodic 3D flow velocities with acceptable spatial and temporal resolution and does not imply that optically transparent fluids are employed. PC-MRI is already widely used for medical diagnostics in order to determine the blood flow velocities, e.g., for cardiovascular applications. However, its utilization for engineering problems is still new, including process engineering. Therefore, it is important to check the suitability of PC-MRI to applications of practical interest in this field and complement other flow measurement and simulation techniques.
Supporting Information
Filename | Description |
---|---|
ceat201700067-sup-0001-misc_information.pdf8.4 KB | Supplementary Information |
ceat201700067-sup-0002-misc_information.avi6.6 MB | Supplementary Information |
ceat201700067-sup-0003-misc_information.avi6.8 MB | Supplementary Information |
ceat201700067-sup-0004-misc_information.avi3 MB | Supplementary Information |
ceat201700067-sup-0005-misc_information.avi4.2 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, J. Magn. Reson. Imaging 2003, 17 (4), 499–506. DOI: 10.1002/jmri.10272
- 2 M. Markl, A. Harloff, T. A. Bley, M. Zaitsev, B. Jung, E. Weigang, M. Langer, J. Hennig, A. Frydrychowicz, J. Magn. Reson. Imaging 2007, 25 (4), 824–831. DOI: 10.1002/jmri.20871
- 3 P. Berg, D. Stucht, G. Janiga, O. Beuing, O. Speck, D. Thévenin, J. Biomech. Eng. 2013, 136 (4), 041003. DOI: 10.1115/1.4026108
- 4 M. Markl, A. Frydrychowicz, S. Kozerke, M. Hope, O. Wieben, J. Magn. Reson. Imaging 2012, 36 (5), 1015–1036. DOI: 10.1002/jmri.23632
- 5 K. W. Moser, E. C. Kutter, J. G. Georgiadis, R. O. Buckius, H. D. Morris, J. R. Torczynski, Exp. Fluids 2000, 29 (5), 438–447. DOI: 10.1007/s003480000110
- 6 E. H. Hardy, Chem. Eng. Technol. 2006, 29 (7), 785–795. DOI: 10.1002/ceat.200600046
- 7 J. W. Mullin, Crystallization, Butterworth-Heinemann, Oxford 1993.
- 8 B. Ashraf Ali, G. Janiga, E. Temmel, A. Seidel-Morgenstern, D. Thévenin, J. Cryst. Growth 2013, 372, 219–229. DOI: 10.1016/j.jcrysgro.2013.01.041
- 9 M. Bearns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH, Weinheim 2006.
- 10
E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge
2009.
10.1017/CBO9780511805134 Google Scholar
- 11
C. Tropea, L. Yarin, J. F. Foss, Handbook of Experimental Fluid Mechanics, Springer, Berlin
2007.
10.1007/978-3-540-30299-5 Google Scholar
- 12 N. Amini, Y. A. Hassan, Exp. Fluids 2012, 53 (6), 2011–2020. DOI: 10.1007/s00348-012-1398-x
- 13 R. Budwig, Exp. Fluids 1994, 17 (5), 350–355. DOI: 10.1007/BF01874416
- 14 R. Bordás, S. Seshadhri, G. Janiga, M. Skalej, D. Thévenin, Interv. Med. Appl. Sci. 2012, 4 (4), 193–205. DOI: 10.1556/IMAS.4.2012.4.4
- 15 A. S. Glassner, An Introduction to Ray Tracing, Morgan Kaufmann Publishers, San Francisco, CA 1989.
- 16 F. Scarano, L. David, M. Bsibsi, D. Calluaud, Exp. Fluids 2005, 39 (2), 257–266. DOI: 10.1007/s00348-005-1000-x
- 17 M. P. Dudukovic, Exp. Therm. Fluid Sci. 2002, 26 (6–7), 747–761. DOI: 10.1016/S0894-1777(02)00185-1
- 18 P. Mavros, Chem. Eng. Res. Des. 2001, 79 (2), 113–127. DOI: 10.1205/02638760151095926
- 19 J. Biswal, S. Goswami, H. J. Pant, Y. R. Bamankar, T. V. R. V. Rao, R. K. Upadhay, A. Dash, Ind. Eng. Chem. Res. 2016, 55 (1), 3–12. DOI: 10.1021/acs.iecr.5b02261
- 20 N. Ali, T. Al-Juwaya, M. Al-Dahhan, Exp. Therm. Fluid Sci. 2017, 80, 90–104. DOI: 10.1016/j.expthermflusci.2016.08.002
- 21 W. S. Vieira, L. E. B. Brandão, D. Braz, Appl. Radiat. Isot. 2014, 85, 139–146. DOI: 10.1016/j.apradiso.2013.12.006
- 22 C. Elkins, M. Markl, N. Pelc, J. Eaton, Exp. Fluids 2003, 34 (4), 494–503. DOI: 10.1007/s00348-003-0587-z
- 23 C. J. Elkins, M. T. Alley, L. Saetran, J. K. Eaton, Exp. Fluids 2009, 46 (2), 285–296. DOI: 10.1007/s00348-008-0559-4
- 24 C. J. Elkins, M. T. Alley, Exp. Fluids 2007, 43 (6), 823–858. DOI: 10.1007/s00348-007-0383-2
- 25 L. F. Gladden, A. J. Sederman, J. Magn. Reson. 2013, 229, 2–11. DOI: 10.1016/j.jmr.2012.11.022
- 26 M. J. Benson, C. J. Elkins, P. D. Mobley, M. T. Alley, J. K. Eaton, Exp. Fluids 2010, 49 (1), 43–55. DOI: 10.1007/s00348-009-0763-x
- 27 M. J. Benson, C. J. Elkins, J. K. Eaton, Exp. Fluids 2011, 51, 443–455. DOI: 10.1007/s00348-011-1062-x
- 28 T. Z. Teisseyre, J. L. Paulsen, V. S. Bajaj, N. W. Halpern-Manners, A. Pines, J. Magn. Reson. 2012, 216, 13–20. DOI: 10.1016/j.jmr.2011.10.001
- 29 E. J. Tozzi, K. L. McCarthy, L. A. Bacca, W. H. Hartt, M. J. McCarthy, J. Visualized Exp. 2012, 59, e3493. DOI: 10.3791/3493
- 30 M. Bieberle, F. Fischer, E. Schleicher, D. Koch, H. J. Menz, H. G. Mayer, U. Hampel, Exp. Fluids 2009, 47, 369–378. DOI: 10.1007/s00348-009-0617-6
- 31 I. V. Mastikhin, A. Arbabi, B. Newling, A. Hamza, A. Adair, Exp. Fluids 2012, 52 (1), 95–104. DOI: 10.1007/s00348-011-1209-9
- 32 V. Neacsu, J. Leisen, H. W. Beckham, S. G. Advani, Exp. Fluids 2007, 42 (3), 425–440. DOI: 10.1007/s00348-007-0251-0
- 33 M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, E. K. Jeong, Exp. Fluids 1993, 16 (1), 54–60. DOI: 10.1007/BF00188507
- 34 P. Porion, N. Sommier, P. Evesque, Europhys. Lett. 2000, 50 (3), 319–325. DOI: 10.1209/epl/i2000-00273-1
- 35 P. Porion, N. Sommier, A.-M. Faugère, P. Evesque, Powder Technol. 2004, 141 (1–2), 55–68. DOI: 10.1016/j.powtec.2004.02.015
- 36 A. G. F. Stapley, T. M. Hyde, L. F. Gladden, P. J. Fryer, Int. J. Food Sci. Technol. 1997, 32 (5), 355–375. DOI: 10.1046/j.1365-2621.1997.00122.x
- 37 M. A. Brown, R. C. Semelka, MRI: Basic Principles and Applications, 4th ed., John Wiley & Sons, Hoboken, NJ 2010.
- 38 E. M. Haacke, R. W. Brown, M. R. Thompson, R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley & Sons, New York 1999.
- 39 J. Bock, B. Kreher, J. Henning, M. Markl, in Proc. of the 15th Annual Meeting of ISMRM, International Society for Magnetic Resonance in Medicine, Berkley 2007, Abstract 3138.