Photocatalytic Activity of Synthetic N-doped TiO2/Reduced Graphene Oxide Crystalline Composites
Corresponding Author
Jianxin Chen
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Yinhui Li ([email protected]), Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, Tianjin 300130, China.Search for more papers by this authorXinxin Wang
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Yinhui Li
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Yinhui Li ([email protected]), Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, Tianjin 300130, China.Search for more papers by this authorNa Zhang
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorMin Su
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorJian Han
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Jianxin Chen
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Yinhui Li ([email protected]), Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, Tianjin 300130, China.Search for more papers by this authorXinxin Wang
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Yinhui Li
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Yinhui Li ([email protected]), Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, Tianjin 300130, China.Search for more papers by this authorNa Zhang
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorMin Su
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorJian Han
Hebei University of Technology, School of Marine Science and Engineering, 8 Guangrong Road, 300130 Tianjin, China
Ministry of Education, Engineering Research Center of Seawater Utilization Technology, 8 Guangrong Road, 300130 Tianjin, China
Search for more papers by this authorAbstract
N-doped TiO2/reduced graphene oxide (N-TiO2/RGO) composites were prepared by a hydrothermal method. Characterization and photocatalytic tests showed that the N-TiO2/RGO composites were more efficient for degrading effluents in comparison with the pure TiO2 powders and the N-doped TiO2 powders. The photocatalytic performance of the composites was enhanced with the increase of the reduced graphene oxides' content, whose degradation rate constant was higher than that of N-TiO2 under simulated sunlight irradiation. After five successive cycles, 50 % N-TiO2/RGO still exhibited high activity, which indicates that the composites are stable under irradiation. An innovative strategy for the exploration of advanced photocatalysts in wastewater treatment is provided.
References
- 1 F. Zhao, B. Dong, R. Gao, G. Su, W. Liu, L. Shi, C. Xia, L. Cao, Appl. Surf. Sci. 2015, 351, 303–308. DOI: 10.1016/j.apsusc.2015.05.121
- 2 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, A. M. Mayes, Nature 2008, 452 (7185), 301–310. DOI: 10.1038/nature06599
- 3 M. Solís, A. Solís, H. I. Pérez, N. Manjarrez, M. Flores, Process Biochem. 2012, 47 (12), 1723–1748. DOI: 10.1016/j.procbio.2012.08.014
- 4 Y. Wu, W. Zhu, X. Lu, Ecol. Eng. 2013, 61, 166–173. DOI: 10.1016/j.ecoleng.2013.09.049
- 5 Y. Sun, J. Qiu, D. Chen, J. Ye, J. Chen, J. Hazard. Mater. 2016, 304, 543–552. DOI: 10.1016/j.jhazmat.2015.11.006
- 6 C. A. Basha, K. V. Selvakumar, H. J. Prabhu, P. Sivashanmugam, C. W. Lee, Sep. Purif. Technol. 2011, 79 (3), 303–309. DOI: 10.1016/j.seppur.2011.02.036
- 7 V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Mater. Sci. Eng., C 2012, 32 (1), 12–17. DOI: 10.1016/j.msec.2011.08.018
- 8 S. Shoabargh, A. Karimi, G. Dehghan, A. Khataee, J. Ind. Eng. Chem. 2014, 20 (5), 3150–3156. DOI: 10.1016/j.jiec.2013.11.058
- 9 C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yang, Z. Ye, L. Cui, C. Xu, Y. Li, J. Alloys Compd. 2016, 656, 24–32. DOI: 10.1016/j.jallcom.2015.09.211
- 10 X. Chen, D.-H. Kuo, D. Lu, Y. Hou, Y.-R. Kuo, Microporous Mesoporous Mater. 2016, 223, 145–151. DOI: 10.1016/j.micromeso.2015.11.005
- 11 W. Yu, J. Zhang, T. Peng, Appl. Catal., B 2016, 181, 220–227. DOI: 10.1016/j.apcatb.2015.07.031
- 12 L. Yu, D. Wang, D. Ye, Sep. Purif. Technol. 2015, 156 (2), 708–714. DOI: 10.1016/j.seppur.2015.10.069
- 13 J. Y. Kim, C. S. Kim, H. K. Chang, T. O. Kim, Adv. Powder Technol. 2011, 22 (3), 443–448. DOI: 10.1016/j.apt.2010.06.014
- 14 A. E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, I. Konstantinou, Appl. Catal., B 2016, 184, 44–54. DOI: 10.1016/j.apcatb.2015.11.009
- 15
M. Khairy, W. Zakaria, Egypt. J. Pet.
2014, 23 (4), 419–426. DOI: 10.1016/j.ejpe.2014.09.010
10.1016/j.ejpe.2014.09.010 Google Scholar
- 16 M. Li, Z. Yu, Q. Liu, L. Sun, W. Huang, Chem. Eng. J. 2016, 286, 232–238. DOI: 10.1016/j.cej.2015.10.037
- 17 Y. Li, C. Xie, S. Peng, G. Lu, S. Li, J. Mol. Catal. A: Chem. 2008, 282 (1), 117–123. DOI: 10.1016/j.molcata.2007.12.005
- 18 K. B. Fadadu, S. S. Soni, Electrochim. Acta 2013, 88, 270–277. DOI: 10.1016/j.electacta.2012.10.072
- 19 Y. Yang, L. Luo, M. Xiao, H. Li, X. Pan, F. Jiang, Mater. Sci. Semicond. Process. 2015, 40, 183–193. DOI: 10.1016/j.mssp.2015.06.012
- 20 S. Malola, H. Häkkinen, P. Koskinen, Phys. Rev. B 2010, 81 (16), 165447. DOI: 10.1103/PhysRevB.81.165447
- 21 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4 (8), 4806–4814. DOI: 10.1021/nn1006368
- 22 Y. Zhang, L. Ge, S. Ge, M. Yan, J. Yan, D. Zang, J. Lu, J. Yu, X. Song, Electrochim. Acta 2013, 112, 620–628. DOI: 10.1016/j.electacta.2013.09.009
- 23 H. Liu, X. Dong, X. Wang, C. Sun, J. Li, Z. Zhu, Chem. Eng. J. 2013, 230, 279–285. DOI: 10.1016/j.cej.2013.06.092
- 24 Y. Yang, M. Kang, S. Fang, M. Wang, L. He, X. Feng, J. Zhao, Z. Zhang, H. Zhang, J. Alloys Compd. 2015, 652, 225–233. DOI: 10.1016/j.jallcom.2015.08.229
- 25 G. Williams, B. Seger, P. V. Kamat, ACS Nano 2008, 2 (7), 1487–1491. DOI: 10.1021/nn800251f
- 26 H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, J. H. Li, ACS Nano 2009, 4 (1), 380–386. DOI: 10.1021/nn901221k
- 27 Y. Zhang, L. Ge, S. G. Ge, M. Yan, J. X. Yan, D. J. Zang, J. J. Lu, J. H. Yu, X. R. Song, Electrochim. Acta 2013, 112, 620–628. DOI: 10.1016/j.electacta.2013.09.009
- 28 C. Chen, Q.-H. Yang, Y. Yang, W. Lv, Y. Wen, P.-X. Hou, M. Wang, H.-M. Cheng, Adv. Mater. 2009, 21 (29), 3007–3011. DOI: 10.1002/adma.200803726
- 29 L. Luo, Y. Yang, A. Zhang, M. Wang, Y. Liu, L. Bian, F. Jiang, X. Pan, Appl. Surf. Sci. 2015, 353, 469–479. DOI: 10.1016/j.apsusc.2015.06.150
- 30 M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, Chem. Eng. J. 2015, 264, 113–124. DOI: 10.1016/j.cej.2014.10.011
- 31 Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, J. P. Claverie, Small 2014, 10 (18), 3775–3782. DOI: 10.1002/smll.201303489
- 32 X. Bai, X. Zhang, Z. Hua, W. Ma, Z. Dai, X. Huang, H. Gu, J. Alloys Compd. 2014, 599, 10–18. DOI: 10.1016/j.jallcom.2014.02.049
- 33 S. Song et al., Appl. Catal., B 2016, 181, 71–78. DOI: 10.1016/j.apcatb.2015.07.034
- 34 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293 (5528), 269–271. DOI: 10.1126/science.1061051
- 35 P. Li, L. Li, M. Xu, Q. Chen, Y. He, Appl. Surf. Sci. 2017, 396, 879–887. DOI: 10.1016/j.apsusc.2016.11.052
- 36 Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen, H. Dai, Nano Res. 2010, 3 (10), 701–705. DOI: 10.1007/s12274-010-0033-5