Coalescence Deformation of Bubble Pairs Generated from Twin Nozzles in CMC Solutions
Corresponding Author
Wenyuan Fan
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.Search for more papers by this authorTong Qi
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorYawei Sun
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorPing Zhu
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorHui Chen
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorCorresponding Author
Wenyuan Fan
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.Search for more papers by this authorTong Qi
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorYawei Sun
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorPing Zhu
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorHui Chen
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
Search for more papers by this authorAbstract
A coupled level-set/volume-of-fluid method, under the consideration of the rheological characteristics of a fluid, is employed to investigate numerical coalescence deformation of bubble pairs generated at two adjacent nozzles in carboxymethyl cellulose aqueous solutions. The satisfactory agreement between numerical results and experimental measurements proves the validity of this approach in predicting the surface evolution of bubbles. Simulated results show that the bubble coalescence process involves four stages of independent growth, rapid mergence, radial expansion, and vertical stretching. The various effects of surfactant concentration, gas flow rate, nozzle spacing, and nozzle diameter on the aspect ratio depend greatly on each coalescence period.
References
- 1 M. Asgharpour, M. R. Mehrnia, N. Mostoufi, Biochem. Eng. J. 2010, 49 (3), 351–360.
- 2 S. K. Majumder, G. Kundu, D. Mukherjee, Chem. Eng. J. 2006, 122 (1–2), 1–10.
- 3 H. Tsuge, J. Mase, K. Ebato, T. Suzaki, J. Chem. Eng. Jpn. 2004, 37 (8), 962–967.
- 4 S. Nedectchev, K. D. P. Nigam, A. Schumpe, Chem. Eng. Sci. 2014, 106, 119–125.
- 5 V. S. Nalajala, N. Kishore, Chem. Eng. Technol. 2014, 37 (10), 1757–1764.
- 6 E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, J. Bouillard, Chem. Eng. Process. 1999, 38 (4), 329–344.
- 7 H. Z. Li, X. Frank, D. Funfschilling, Y. Mouline, Chem. Eng. Sci. 2001, 56 (21), 6419–6425.
- 8 A. A. Mouza, G. K. Dalakoglou, S. V. Paras, Chem. Eng. Sci. 2005, 60 (5), 1465–1475.
- 9 T. J. Lin, G. M. Lin, Chem. Eng. J. 2009, 155 (3), 750–756.
- 10 D. Dekee, P. J. Carreau, J. Mordarski, Chem. Eng. Sci. 1986, 41 (9), 2273–2283.
- 11 S. K. Jiang, Y. G. Ma, W. Y. Fan, K. Yang, H. Z. Li, Korean J. Chem. Eng. 2011, 28 (1), 56–63.
- 12 M. J. Prince, H. W. Blanch, AIChE J. 1990, 36 (10), 1485–1499.
- 13 N. A. Kazakis, A. A. Mouza, S. V. Paras, Chem. Eng. J. 2008, 137 (2), 265–281.
- 14 N. A. Kazakis, A. A. Mouza, S. V. Paras, Chem. Eng. Sci. 2008, 63 (21), 5160–5178.
- 15 M. Martín, F. J. Montes, M. A. Galan, Chem. Eng. Sci. 2007, 62 (6), 1741–1752.
- 16 M. Martín, J. M. García, F. J. Montes, M. A. Galán, Chem. Eng. Process. 2008, 47 (9–10), 1799–1809.
- 17 Z. Liu, C. Herman, D. Mewes, Exp. Therm. Fluid Sci. 2006, 31 (2), 151–163.
- 18 W. Kracht, J. A. Finch, J. Colloid Interface Sci. 2009, 332 (1), 237–245.
- 19 L. Bu, J. Zhao, Int. J. Therm. Sci. 2012, 59, 1–8.
- 20 L. Zhang, C. Yang, Z. S. Mao, J. Non-Newtonian Fluid Mech. 2010, 165 (11), 555–567.
- 21 D. Jain, J. A. M. Kuipers, N. G. Deen, Chem. Eng. Sci. 2014, 119, 134–146.
- 22 J. Klostermann, K. Schaake, R. Schwarze, Int. J. Numer. Methods Fluids 2013, 71 (8), 960–982.
- 23 P. Zahedi, R. Saleh, R. Moreno-Atanasio, K. Yousefi, Korean J. Chem. Eng. 2014, 31 (8), 1349–1361.
- 24 S. Aland, A. Voigt, Int. J. Numer. Methods Fluids 2012, 69 (3), 747–761.
- 25 H. B. Huang, J. J. Huang, X. Y. Lu, J. Comput. Phys. 2014, 269, 386–402.
- 26 T. Sun, W. Li, Comput. Fluids 2013, 88, 400–409.
- 27 M. Cheng, J. S. Hua, J. Lou, Comput. Fluids 2010, 39 (2), 260–270.
- 28 R. Masood, A. Delgado, Chem. Eng. Technol. 2014, 37 (10), 1697–1704.
- 29 R. H. Chen, W. X. Tian, G. H. Su, S. Z. Qiu, Y. Ishiwatari, Y. Oka, Chem. Eng. Sci. 2011, 66 (21), 5055–5063.
- 30 M. D. Mattson, K. Mahesh, Int. J. Multiphase Flow 2012, 40, 68–82.
- 31 J. R. Liu, C. Y. Zhu, T. T. Fu, Y. G. Ma, Ind. Eng. Chem. Res. 2014, 53 (12), 4850–4860.
- 32 J. J. Feng, X. C. Li, Y. Y. Bao, Z. Q. Cai, Z. M. Gao, Chem. Eng. Sci. 2016, 141, 261–270.
- 33 I. Chakraborty, G. Biswas, P. S. Ghoshdastidar, Int. J. Heat Mass Transfer 2013, 58 (1–2), 240–259.
- 34 Y. L. Guo, L. Wei, G. T. Liang, S. Q. Shen, Int. Commun. Heat Mass Transfer 2014, 53, 26–33.
- 35 M. Ohta, D. Kikuchi, Y. Yoshida, M. Sussman, Int. J. Multiphase Flow 2011, 37 (9), 1059–1071.
- 36 W. Y. Fan, Y. W. Sun, H. Chen, Chem. Eng. Technol. 2014, 37 (9), 1566–1574.
- 37 I. Chakraborty, G. Biswas, S. Polepalle, P. S. Ghoshdastidar, AIChE J. 2015, 61 (11), 3996–4012.
- 38 W. Y. Fan, Y. G. Ma, S. K. Jiang, K. Yang, H. Z. Li, J. Fluids Eng. 2010, 132 (2), 021305.
- 39 M. Sussman, E. G. Puckett, J. Comput. Phys. 2000, 162 (2), 301–337.
- 40 J. U. Brackbill, D. B. Kothe, C. Zemach, J. Comput. Phys. 1992, 100 (2), 335–354.
- 41 S. Radl, G. Tryggvason, J. G. Khinast, AIChE J. 2007, 53 (7), 1861–1878.
- 42 S. D. Bari, A. J. Robinson, Exp. Therm. Fluid Sci. 2013, 44, 124–137.
- 43 G. Bournival, S. Ata, S. I. Karakashev, G. J. Jameson, J. Colloid Interface Sci. 2014, 414, 50–58.
- 44 S. Zhao, Y. D. Ding, R. Chen, Q. Liao, X. Zhu, Int. J. Heat Mass Transfer 2015, 90, 1001–1008.