Analyzing the Adaption of Different Adsorption Models for Describing the Shale Gas Adsorption Law
Corresponding Author
Zhouhua Wang
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.Search for more papers by this authorYun Li
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorPing Guo
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorWeijie Meng
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorCorresponding Author
Zhouhua Wang
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.Search for more papers by this authorYun Li
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorPing Guo
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorWeijie Meng
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China.
Search for more papers by this authorAbstract
The adsorption capacity of a shale gas reservoir is mainly determined by the isothermal adsorption experiment. In this study, the building conditions and performances of seven single-component and five multi-component adsorption models were compared and analyzed. The results show that most shale gas reservoir adsorption characteristics obey those of type I on the macroscopic scale. The adsorption isotherms of single components can be described by the Langmuir-Freundlich, Langmuir, and Toth models. The revised Langmuir, extended Langmuir, and the loading ratio correlation (LRC) models can be applied to binary-component mixtures; and the extended Langmuir and LRC models perform best for shale gas. The obtained results might have an important promoting effect for modeling the shortage of shale gas.
References
- 1 J. Zhang, Z. Jin, M. Yuan, Nat. Gas Ind. 2004, 24 (7), 15–18.
- 2 J. A. Masters, AAPG Bull. 1979, 63 (2), 152–181.
- 3 C. R. Clarkson, R. M. Bustin, Fuel 1999, 78 (11), 1345–1362.
- 4 S. L. Montgomery, D. M. Jarvie, K. A. Bowker, R. M. Pollastro, AAPG Bull. 2006, 90 (6), 967–969.
- 5 D. J. K. Ross, R. M. Bustin, Bull. Can. Pet. Geol. 2007, 55 (2), 176–177.
- 6 A. M. M. Bustin, R. M. Bustin, X. Cui, SPE Unconventional Reservoirs Conf., Keystone, CO, February 2008, SPE 114167.
- 7 R. F. Sigal, B. F. Qin, Petrophysics 2008, 49 (3), 406–413.
- 8 W. Xiong, W. Guo, H. Liu, S. Gao, Z. Hu, F. Yang, Nat. Gas Ind. 2012, 32 (1), 113–116.
- 9 H. Liu, H. Wang, Nat. Gas Ind. 2012, 32 (9), 5–9.
- 10
W. Guo, W. Xiong, S. Gao, Z. Hu, H. Liu, R. Yu, Pet. Explor. Dev. 2013, 40 (4), 514–519.
10.1016/S1876-3804(13)60066-X Google Scholar
- 11 W. Guo, W. Xiong, S. Gao, Z. Hu, J. Cent. South Univ. 2013, 44 (7), 2836–2840.
- 12 I. Langmuir, J. Am. Chem. Soc. 1918, 40 (9), 1361–1403.
- 13 L. E. Arri, Y. Dan, W. D. Morgan, M. W. Jeansonne, SPE Rocky Mountain Regional Meeting, Casper, WY, May 1992, SPE 24363.
- 14 F. E. Hall, C. Zhou, K. A. M. Gasem, R. L. Robinson Jr., SPE Eastern Regional Meeting, Charleston, SC, November 1994, SPE 29194.
- 15
X. Xie, H. Tang, C. Wang, R. Bai, Z. Wang, Nat. Gas Ind. 2006, 26 (12), 100–102.
10.1016/S1003-9953(06)60015-7 Google Scholar
- 16 J. Ř. Čermáková, A. Marković, P. Uchytil, A. Seidel-Morgenstern, Chem. Eng. Sci. 2008, 63 (6), 1586–1601.
- 17 Z. Y. Zhang, S. B. Yang, J. Exp. Mech. 2012, 27 (4), 492–497.
- 18 P. Guo, D. L. Wang, Z. H. Wang, K. Huang, X. T. Zhang, Z. X. Liu, Geol. Sci. Technol. Inf. 2012, 6, 118–123.
- 19 P. Chareonsuppanimit, S. A. Mohammad, R. L. Robinson Jr., K. A. M. Gasem, Int. J. Coal Geol. 2012, 95, 34–46.
- 20 J. R. Karra, B. E. Grabicka, Y. G. Huang, K. S. Walton, J. Colloid Interface Sci. 2013, 392, 331–336.
- 21 K. A. M. Gasem, R. L. Robinson Jr., S. R. Reeves, Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal, DOE Topical Report, May 2002.
- 22 N. Heymans, B. Alban, S. Moreau, G. De Weireld, Chem. Eng. Sci. 2011, 66 (17), 3850–3858.
- 23 S. Lafortune, F. Adelise, G. Bentivegna, C. Didier, R. Farret, P. Gombert, C. Lagny, Z. Pokryszka, N. C. Toimil, Energy Procedia 2014, 63, 5870–5878.
- 24 C. R. Clarkson, R. M. Bustin, Int. J. Coal Geol. 2000, 42 (4), 241–271.
- 25
D. E. Wurster, K. A. Alkhamis, L. E. Matheson, AAPS PharmSciTech 2000, 1 (3), 79–93.
10.1208/pt010325 Google Scholar
- 26 A. Leitão, R. Serrão, Adsorption 2005, 11 (2), 167–179.
- 27 E. Ozdemir, B. I. Morsi, K. Schroeder, Langmuir 2003, 19 (23), 9764–9773.
- 28 B. M. Jeong, E. S. Ahn, J. H. Yun, C. H. Lee, D. K. Choi, Sep. Purif. Technol. 2007, 55 (3), 335–342.
- 29 Z. Pan, L. D. Connell, Int. J. Greenhouse Gas Control 2009, 3 (1), 77–89.
- 30 J. Wu, H. Wang, W. Bai, H. Xue, D. Du, Fault-Block Oil Gas Field 2013, 20 (6), 713–718.
- 31 M. Zhang, Ph.D. Thesis, China University of Geosciences, Beijing 2014.
- 32 R. C. Hartman, R. J. Ambrose, I. Y. Akkutlu, C. R. Clarkson, North American Unconventional Gas Conf. and Exhibition, The Woodlands, TX, June 2011.
- 33 J. Q. Wu, Ph.D. Thesis, Tianjin University 2006.
- 34 Q. Wu, Ph.D. Thesis, Tianjin University 2003.
- 35 R. Xu, W. Pang, J. Yu, Chemistry-Zeolites and Porous Materials, Science Press, Beijing 2004.
- 36 Y. Zhou, L. Zhou, Acta Phys.-Chim. Sin. 1997, 13 (2), 119–127.
- 37 Z. Zhang, Z. Meng, Y. Zhang, J. Northwest A&F Univ. 2003, 31 (5), 202–204.
- 38 I. Langmuir, J. Am. Chem. Soc. 1916, 38 (11), 2221–2295.
- 39 M. M. Dubinin, L. V. Radushkevich, A. N. Dokl, SSSR Ser. Khim. Comm. USSR Acad. Sci. 1947, 55, 331–335.
- 40 H. F. Stoeckli, J. Colloid Interface Sci. 1977, 59 (1), 184–185.
- 41 O. Redlich, D. L. Peterson, J. Phys. Chem. 1959, 63 (6), 1024.
- 42 A. P. Terzyk, J. Chatlas, P. A. Gauden, G. Rychlicki, P. Kowalczyk, J. Colloid Interface Sci. 2003, 266 (2), 473–476.
- 43 J. R. Sips, J. Chem. Phys. 1948, 16, 490–495.
- 44 I. Quiñones, G. Guiochon, J. Chromatogr. A 1998, 796 (1), 15–40.
- 45 S. Kumar, M. Zafar, J. K. Prajapati, S. Kumar, S. Kannepalli, J. Hazard. Mater. 2011, 185 (1), 287–294.
- 46 T. Zhao, Z. Ning, B. He, CQU J. Sci. Technol. 2014, 55–58.
- 47 S. K. Srivastava, R. Tyagi, Water Res. 1995, 29 (2), 483–488.
- 48 A. R. Khan, T. A. Al-Bahri, A. Al-Haddad, Water Res. 1997, 31 (8), 2102–2112.
- 49 Z. Aksu, U. Açıkel, E. Kabasakal, S. Tezer, Water Res. 2002, 36 (12), 3063–3073.
- 50 E. Ozdemir, B. I. Morsi, K. Schroeder, Langmuir 2003, 19 (23), 9764–9773.
- 51 G. McKay, B. Al Duri, Chem. Eng. J. 1989, 41 (1), 9–23.
- 52 W. Fritz, E. U. Schlünder, Chem. Eng. Sci. 1981, 36 (4), 731–741.
- 53 T. Zhang, G. S. Ellis, S. C. Ruppel, K. Milliken, R. Yang, Org. Geochem. 2012, 47, 120–131.
- 54 J. Fu, S. Guo, X. Liu, Y. Wang, JLU J. Earth Sci. 2013, 43, 382–389.
- 55 F. Dreisbach, R. Staudt, J. U. Keller, Adsorption 1999, 5 (3), 215–227.