Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects
Rab Nawaz
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
Search for more papers by this authorCorresponding Author
Salim Newaz Kazi
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bee Teng Chew
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
E-mail: [email protected]; [email protected]
Search for more papers by this authorMohd Nashrul Mohd Zubir
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorKaleemullah Shaikh
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Faculty of Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Balochistan, Pakistan
Search for more papers by this authorSamr Ul Hasnain
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Department of Mechanical Engineering, University of Gujrat, Gujrat, Pakistan
Search for more papers by this authorWajahat Ahmed Khan
Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorRab Nawaz
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
Search for more papers by this authorCorresponding Author
Salim Newaz Kazi
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bee Teng Chew
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
E-mail: [email protected]; [email protected]
Search for more papers by this authorMohd Nashrul Mohd Zubir
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorKaleemullah Shaikh
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Faculty of Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Balochistan, Pakistan
Search for more papers by this authorSamr Ul Hasnain
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Department of Mechanical Engineering, University of Gujrat, Gujrat, Pakistan
Search for more papers by this authorWajahat Ahmed Khan
Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorAbstract
Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆P). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in ΔP. Apart from an increase in ΔP, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- 1Y. Cao, H. Ayed, A. E. Anqi, O. Tutunchian, H. S. Dizaji, S. Pourhedayat, Int. J. Therm. Sci. 2021, 170, 107139. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107139
10.1016/j.ijthermalsci.2021.107139 Google Scholar
- 2S. Laohalertdecha, S. Wongwises, Int. J. Heat Mass Transf. 2010, 53 (13–14), 2924–2931. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.037
- 3S. Thapa, S. Samir, K. Kumar, S. Singh, Mater. Today Proc. 2021, 45, 4942–4947. DOI: https://doi.org/10.1016/j.matpr.2021.01.382
- 4S. Liu, M. Sakr, Renew. Sustainable Energy Rev. 2013, 19, 64–81. DOI: https://doi.org/10.1016/j.rser.2012.11.021
- 5W. Gong, J. Shen, W. Dai, K. Li, M. Gong, Int. J. Heat Mass Transf. 2021, 172, 121152. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121152
10.1016/j.ijheatmasstransfer.2021.121152 Google Scholar
- 6S. S. M. Ajarostaghi, M. Zaboli, H. Javadi, B. Badenes, J. F. Urchueguia, Energies (Basel) 2022, 15 (3), 986. DOI: https://doi.org/10.3390/en15030986
- 7R. L. Webb, Int. J. Heat Mass Transfer. 1981, 24, 715–726. DOI: https://doi.org/10.1016/0017-9310(81)90015-6
- 8C. S. Brown, N. J. Cassidy, S. S. Egan, D. Griffiths, Energies (Basel) 2022, 15 (6), 1983. DOI: https://doi.org/10.3390/en15061983
10.3390/en15061983 Google Scholar
- 9M. Mirzaei, H. Hajabdollahi, H. Fadakar, Appl. Therm. Eng. 2017, 125, 9–19. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.137
- 10S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge, Int. Commun. Heat Mass Transfer 2011, 38 (3), 340–347. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.11.014
- 11Z.-B. Z. Zhiming Xu, J. Enhanced Heat Transfer 2010, 17 (4), 331–341. DOI: https://doi.org/10.1615/JEnhHeatTransf.v17.i4.40
10.1615/JEnhHeatTransf.v17.i4.40 Google Scholar
- 12A. García, J. P. Solano, P. G. Vicente, A. Viedma, Appl. Therm. Eng. 2012, 35 (1), 196–201. DOI: https://doi.org/10.1016/j.applthermaleng.2011.10.030
10.1016/j.applthermaleng.2011.10.030 Google Scholar
- 13S. Yadav, S. K. Sahu, Exp. Heat Transfer 2020, 33 (1), 18–39. DOI: https://doi.org/10.1080/08916152.2019.1569179
- 14Z. Amrar, E. Rabinovich, I. Baroukh, G. Ziskind, Int. J. Heat Mass Transf. 2022, 196, 123290. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123290
- 15J. Lu, X. Shen, D. Jing, P. Qiang, Y. Wen, Appl. Therm. Eng. 2013, 61 (2), 157–162. DOI: https://doi.org/10.1016/j.applthermaleng.2013.07.037
10.1016/j.applthermaleng.2013.07.037 Google Scholar
- 16C. Chen, Y. T. Wu, S. T. Wang, C. F. Ma, Exp. Therm. Fluid Sci. 2013, 47, 108–116. DOI: https://doi.org/10.1016/j.expthermflusci.2013.01.006
10.1016/j.expthermflusci.2013.01.006 Google Scholar
- 17P. N. Haubenreich, J. R. Engel, Nucl. Appl. Technol. 1970, 8 (2), 118–136. DOI: https://doi.org/10.13182/NT8-2-118
- 18H. A. Mohammed, A. K. Abbas, J. M. Sheriff, Int. Commun. Heat Mass Transfer 2013, 44, 116–126. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.005
- 19H. Z. Han, B. X. Li, B. Y. Yu, Y. R. He, F. C. Li, Int. J. Heat Mass Transf. 2012, 55 (25–26), 7782–7802. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.007
10.1016/j.ijheatmasstransfer.2012.08.007 Google Scholar
- 20X. Chen, H. Han, K. S. Lee, B. Li, Y. Zhang, Nucl. Eng. Des. 2019, 350, 78–89. DOI: https://doi.org/10.1016/j.nucengdes.2019.05.001
- 21A. R. Al-Obaidi, J. Alhamid, Int. J. Therm. Sci. 2022, 176, 107528. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107528
- 22A. R. Al-Obaidi, Int. J. Therm. Sci. 2022, 171, 107237. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107237
- 23J. Alhamid, R. A. Al-Obaidi, J. Phys. Conf. Ser. 2021, 1845, 012061. DOI: https://doi.org/10.1088/1742-6596/1845/1/012061
- 24A. R. Al-Obaidi, J. Energy Storage 2019, 26, 101012. DOI: https://doi.org/10.1016/j.est.2019.101012
10.1016/j.est.2019.101012 Google Scholar
- 25A. R. Al-Obaidi, J. Alhamid, J. Phys. Conf. Ser. 2021, 1733, 012004. DOI: https://doi.org/10.1088/1742-6596/1733/1/012004
- 26A. R. Al-Obaidi, J. Alhamid, Int. Commun. Heat Mass Transfer 2021, 126, 105394. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105394
- 27X. W. Li, J. A. Meng, Z. X. Li, Int. J. Heat Mass Transf. 2011, 54 (9–10), 1775–1781. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.039
10.1016/j.ijheatmasstransfer.2010.12.039 Google Scholar
- 28H. S. Dizaji, S. Jafarmadar, Exp. Heat Transfer 2016, 29 (5), 577–592. DOI: https://doi.org/10.1080/08916152.2015.1046015
10.1080/08916152.2015.1046015 Google Scholar
- 29H. Sadighi Dizaji, S. Jafarmadar, F. Mobadersani, Int. J. Therm. Sci. 2015, 96, 211–220. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.05.009
10.1016/j.ijthermalsci.2015.05.009 Google Scholar
- 30A. Begag, R. Saim, S. Abboudi, H. F. Öztop, Int. J. Therm. Sci. 2021, 165, 106930. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.106930
10.1016/j.ijthermalsci.2021.106930 Google Scholar
- 31S. Rainieri, G. Pagliarini, Int. J. Heat Mass Transf. 2002, 45 (2002), 4525–4536. DOI: https://doi.org/10.1016/S0017-9310(02)00156-4
10.1016/S0017-9310(02)00156-4 Google Scholar
- 32S. Rainieri, A. Farina, G. Pagliarini, Università Di Parma, Dipartimento Di Ingegneria Industriale 1995.
- 33S. G. P. Rainieri, Int. J. Heat Technol. 1997, 15, 69–75.
- 34S. Rozzi, R. Massini, G. Paciello, G. Pagliarini, S. Rainieri, A. Trifirò, J. Food Eng. 2007, 79 (1), 249–254. DOI: https://doi.org/10.1016/j.jfoodeng.2006.01.050
- 35J. D. Moya-Rico, A. E. Molina, J. I. Córcoles, A. J., Int. J. Therm. Sci. 2022, 179, 107640. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107640
10.1016/j.ijthermalsci.2022.107640 Google Scholar
- 36K. Shaikh, K. M. S. Newaz, M. N. M. Zubir, K. H. Wong, W. A. Khan, S. Abdullah, M. S. Alam, L. Sugumaran, J. Therm. Anal. Calorim. 2023, 148 (22), 12369–12392. DOI: https://doi.org/10.1007/s10973-023-12544-z
- 37J. D. Moya-Rico, A. E. Molina, J. F. Belmonte, J. I. Córcoles Tendero, J. A. Almendros-Ibáñez, Appl. Therm. Eng. 2019, 147, 1036–1046. DOI: https://doi.org/10.1016/j.applthermaleng.2018.10.136
- 38T. N. Verma, P. Nashine, D. V. Singh, T. S. Singh, D. Panwar, Appl. Therm. Eng. 2017, 120, 219–227. DOI: https://doi.org/10.1016/j.applthermaleng.2017.03.126
- 39K. Aroonrat, A. S. Dalkilic, S. Wongwises, Exp. Heat Transfer 2013, 26 (1), 41–63. DOI: https://doi.org/10.1080/08916152.2011.631080
- 40K. Aroonrat, S. Wongwises, Exp. Therm. Fluid Sci. 2011, 35 (1), 20–28. DOI: https://doi.org/10.1016/j.expthermflusci.2010.08.002
- 41S. Laohalertdecha, S. Wongwises, Int. J. Heat Mass Transf. 2011, 54 (11–12), 2673–2682. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.034
- 42S. Laohalertdecha, S. Wongwises, Int. J. Refrig. 2011, 34 (1), 280–291. DOI: https://doi.org/10.1016/j.ijrefrig.2010.07.012
- 43S. Laohalertdecha, A. S. Dalkilic, S. Wongwises, Int. Commun. Heat Mass Transfer 2011, 38 (10), 1406–1413. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.08.014
- 44S. Laohalertdecha, K. Aroonrat, A. S. Dalkilic, O. Mahian, S. Kaewnai, S. Wongwises, Heat Mass Transfer/Waerme- und Stoffuebertragung 2014, 50 (4), 469–482. DOI: https://doi.org/10.1007/s00231-013-1252-6
- 45Z. S. Kareem, S. Abdullah, T. M. Lazim, M. N. Mohd Jaafar, A. F. Abdul Wahid, Chem. Eng. Sci. 2015, 134, 746–757. DOI: https://doi.org/10.1016/j.ces.2015.06.009
- 46Z. S. Kareem, M. N. Mohd Jaafar, T. M. Lazim, S. Abdullah, A. F. Abdulwahid, Alexandria Eng. J. 2015, 54 (3), 415–422. DOI: https://doi.org/10.1016/j.aej.2015.04.001
10.1016/j.aej.2015.04.001 Google Scholar
- 47G. F. Smaisim, Al-Qadisiyah J. Eng. Sci. 2018, 10 (4), 451–467. DOI: https://doi.org/10.30772/qjes.v10i4.493
10.30772/qjes.v10i4.493 Google Scholar
- 48A. Barba, S. Rainieri, M. Spiga, Int. Comm. Heat Mass Transfer 2002, 29 (3), 313–322. DOI: https://doi.org/10.1016/S0735-1933(02)00321-4
- 49H. H. Balla, Case Stud. Therm. Eng. 2017, 9, 79–89. DOI: https://doi.org/10.1016/j.csite.2017.01.001
10.1016/j.csite.2017.01.001 Google Scholar
- 50Z. Jiang Jin, F. Qiang Chen, Z. Xin Gao, X. Fei Gao, J. Yuan Qian, Int. J. Heat Mass Transf. 2017, 108, 1011–1025. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.091
10.1016/j.ijheatmasstransfer.2016.12.091 Google Scholar
- 51P. Promthaisong, W. Jedsadaratanachai, S. Eiamsa-Ard, J. Therm. Sci. Technol. 2018, 13 (1), JTST0008–JTST0008. DOI: https://doi.org/10.1299/jtst.2018jtst0008
10.1299/jtst.2018jtst0008 Google Scholar
- 52P. Promthaisong, W. Jedsadaratanachai, V. Chuwattanakul, S. Eiamsa-Ard, AIP Conf. Proc. 2017, 1879, 020005. DOI: https://doi.org/10.1063/1.5000461
10.1063/1.5000461 Google Scholar
- 53V. Kongkaitpaiboon, P. Promthaisong, V. Chuwattanakul, K. Wongcharee, S. Eiamsa-ard, J. Mech. Sci. Technol. 2019, 33 (8), 4005–4012. DOI: https://doi.org/10.1007/s12206-019-0745-8
10.1007/s12206-019-0745-8 Google Scholar
- 54S. Rostami, N. Ahmadi, S. Khorasani, Int. J. Therm. Sci. 2019, 145, 106030. DOI: https://doi.org/10.1016/j.ijthermalsci.2019.106030
10.1016/j.ijthermalsci.2019.106030 Google Scholar
- 55F. Andrade, A. S. Moita, A. Nikulin, A. L. N. Moreira, H. Santos, Int. J. Heat Mass Transf. 2019, 140, 940–955. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.025
- 56J. I. Córcoles, J. D. Moya-Rico, A. E. Molina, A. J., Int. J. Therm. Sci. 2020, 158, 106526. DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106526
- 57J. I. Córcoles-Tendero, J. F. Belmonte, A. E. Molina, J. A. Almendros-Ibáñez, Int. J. Therm. Sci. 2018, 126, 125–136. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.12.028
10.1016/j.ijthermalsci.2017.12.028 Google Scholar
- 58J. I. Córcoles, J. F. Belmonte, A. E. Molina, J. A. Almendros-Ibáñez, Int. J. Therm. Sci. 2019, 137, 262–275. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.11.021
- 59S. M. Kirkar, A. Gönül, A. Celen, A. S. Dalkilic, Int. J. Therm. Sci. 2023, 186, 108119. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.108119
10.1016/j.ijthermalsci.2022.108119 Google Scholar
- 60Q. Hu, K. Yuan, W. Peng, G. Zhao, J. Wang, Nucl. Eng. Des. 2021, 380, 111275. DOI: https://doi.org/10.1016/j.nucengdes.2021.111275
- 61H. Wang, X. Zhong, Nucl. Power Reactor Des.: From Hist. Adv. 2024, 135–162. DOI: https://doi.org/10.1016/B978-0-323-99880-2.00008-4
10.1016/B978-0-323-99880-2.00008-4 Google Scholar
- 62Y. Dong, L. Huixiong, C. Tingkuan, Exp. Therm. Fluid Sci. 2001, 24 (2001), 131–138. DOI: https://doi.org/10.1016/S0894-1777(01)00047-4
10.1016/S0894-1777(01)00047-4 Google Scholar
- 63J. J. Liu, Z. C. Liu, W. Liu, Int. J. Therm. Sci. 2015, 89, 34–42. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.10.011
- 64W. Wang, Y. Shuai, B. Li, B. Li, K. S. Lee, Int. J. Heat Mass Transf. 2021, 168, 120905. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.120905
10.1016/j.ijheatmasstransfer.2021.120905 Google Scholar
- 65J. Yuan Qian, C. Yang, M. rui Chen, Z. Jiang Jin, Int. J. Heat Mass Transf. 2020, 156, 119876. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119876
10.1016/j.ijheatmasstransfer.2020.119876 Google Scholar
- 66W. Wang, Y. Zhang, Y. Li, H. Han, B. Li, Int. J. Heat Mass Transf. 2018, 120, 782–792. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.079
- 67W. Wang, Y. Zhang, B. Li, Y. Li, Int. J. Heat Mass Transf. 2018, 116, 115–126. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.003
- 68W. Wang, Y. Zhang, K. S. Lee, B. Li, Int. J. Heat Mass Transf. 2019, 135, 706–716. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.115
- 69W. Wang, Y. Zhang, Y. Li, H. Han, B. Li, Appl. Therm. Eng. 2018, 138, 795–806. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.080
- 70H. Cui, X. Yuan, Z. Yao, Exp. Heat Transfer 2003, 16 (3), 159–169. DOI: https://doi.org/10.1080/08916150390197416
- 71P. S. Kathait, A. K. Patil, Appl. Therm. Eng. 2014, 66 (1–2), 162–170. DOI: https://doi.org/10.1016/j.applthermaleng.2014.01.069
10.1016/j.applthermaleng.2014.01.069 Google Scholar
- 72K. Navickaitė, L. Cattani, C. R. H. Bahl, K. Engelbrecht, Int. J. Heat Mass Transf. 2019, 128, 363–377. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.003
10.1016/j.ijheatmasstransfer.2018.09.003 Google Scholar
- 73K. Navickaitė, M. Penzel, C. R. H. Bahl, K. Engelbrecht, Energies (Basel). 2021, 14 (5), 1343. DOI: https://doi.org/10.3390/en14051343
- 74M. S. Fadl, in Proc. ICFD11: Eleventh Int. Conf. Fluid Dyn., ALexandria 2013. https://www.researchgate.net/publication/277516442
- 75K. Bilen, M. Cetin, H. Gul, T. Balta, Appl. Therm. Eng. 2009, 29 (4), 753–761. DOI: https://doi.org/10.1016/j.applthermaleng.2008.04.008
- 76A. Kaood, T. Abou-Deif, H. Eltahan, M. A. Yehia, E. E. Khalil, Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233 (4), 457–475. DOI: https://doi.org/10.1177/0957650918806407
- 77A. Kaood, M. A. Hassan, Chem. Eng. Process.—Process Intensif. 2020, 154, 108043. DOI: https://doi.org/10.1016/j.cep.2020.108043
- 78Y. Hong, J. Du, S. Wang, S. M. Huang, Appl. Therm. Eng. 2017, 126, 151–166. DOI: https://doi.org/10.1016/j.applthermaleng.2017.07.135
10.1016/j.applthermaleng.2017.07.135 Google Scholar
- 79S. Pesteei, N. Mashoofi, S. Pourahmad, A. Roshana, Int. J. Heat Technol. 2017, 35 (2), 243–248. DOI: https://doi.org/10.18280/ijht.350202
10.18280/ijht.350202 Google Scholar
- 80W. A. Khan, S. N. Kazi, Z. Z. Chowdhury, M. N. Mohd Zubir, Y. H. Wong, K. Shaikh, R. Nawaz, Sol. Energy Mater. Sol. Cells 2024, 276, 113046. DOI: https://doi.org/10.1016/j.solmat.2024.113046
- 81K. Wongcharee, S. Eiamsa-Ard, Int. Commun. Heat Mass Transfer 2012, 39 (2), 251–257. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.11.010
- 82A. A. R. Darzi, M. Farhadi, K. Sedighi, S. Aallahyari, M. A. Delavar, Int. Commun. Heat Mass Transfer 2013, 41, 68–75. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.11.006
- 83A. A. Rabienataj Darzi, M. Farhadi, K. Sedighi, Exp. Therm. Fluid Sci. 2014, 57, 188–199. DOI: https://doi.org/10.1016/j.expthermflusci.2014.04.024
- 84A. A. R. Darzi, M. Farhadi, K. Sedighi, R. Shafaghat, K. Zabihi, Int. Commun. Heat Mass Transfer 2012, 39 (9), 1425–1434. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.07.027
- 85R. K. Ajeel, W. Saiful-Islam, W. Salim, K. Hasnan, J. Adv. Res. Fluid Mech. Therm. Sci. J. Homepage 2019, 53, 82–94.
- 86G. Wang, C. Qi, M. Liu, C. Li, Y. Yan, L. Liang, Energy Convers. Manag. 2019, 186, 51–65. DOI: https://doi.org/10.1016/j.enconman.2019.02.046
- 87Y. Wan, R. Wu, C. Qi, G. Duan, R. Yang, Chin. J. Chem. Eng. 2018, 26 (12), 2431–2440. DOI: https://doi.org/10.1016/j.cjche.2018.07.007
- 88C. Qi, Y. L. Wan, C. Y. Li, D. T. Han, Z. H. Rao, Int. J. Heat Mass Transf. 2017, 115, 1072–1084. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.098
- 89M. A. Khairul, A. Hossain, R. Saidur, M. A. Alim, Comput. Fluids 2014, 100, 123–129. DOI: https://doi.org/10.1016/j.compfluid.2014.05.007
- 90V. Zimparov, Int. J. Heat Mass Transf. 2004, 47 (2), 385–393. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.004
10.1016/j.ijheatmasstransfer.2003.08.004 Google Scholar
- 91V. Zimparov, Int. J. Heat Mass Transf. 2004, 47 (3), 589–599. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.003
10.1016/j.ijheatmasstransfer.2003.08.003 Google Scholar
- 92V. Mokkapati, C. Sen Lin, Int. Commun. Heat Mass Transfer 2014, 57, 53–64. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2014.07.002
- 93J. Du, Y. Hong, S. Wang, W. B. Ye, S. M. Huang, Int. J. Therm. Sci. 2018, 133, 330–340. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.05.032
- 94S. Bhattacharyya, A. C. Benim, H. Chattopadhyay, A. Banerjee, Exp. Heat Transfer 2019, 32 (5), 411–425. DOI: https://doi.org/10.1080/08916152.2018.1531955
- 95P. K. Pal, S. K. Saha, Exp. Therm. Fluid Sci. 2014, 57, 301–309. DOI: https://doi.org/10.1016/j.expthermflusci.2014.05.007
10.1016/j.expthermflusci.2014.05.007 Google Scholar
- 96S. K. Saha, Exp. Therm. Fluid Sci. 2012, 38, 201–209. DOI: https://doi.org/10.1016/j.expthermflusci.2011.12.008
- 97S. K. Saha, B. N. Swain, G. L. Dayanidhi, J. Fluids Eng., Trans. ASME 2012, 134 (5), 051210. DOI: https://doi.org/10.1115/1.4006669
10.1115/1.4006669 Google Scholar
- 98P. Bharadwaj, A. D. Khondge, A. W. Date, Int. J. Heat Mass Transf. 2009, 52 (7–8), 1938–1944. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.038
- 99M. R. J. Nasr, A. H. Khalaj, Heat Transfer Eng. 2010, 31 (1), 59–69. DOI: https://doi.org/10.1080/01457630903263440
- 100N. A. Fadhil, A. M. Al-Dabagh, F. F. Hatem, Int. J. Heat Technol. 2023, 41 (3), 591–601. DOI: https://doi.org/10.18280/ijht.410311
10.18280/ijht.410311 Google Scholar
- 101H. Kazemi Moghadam, S. S. Mousavi Ajarostaghi, S. Poncet, J. Therm. Anal. Calorim. 2020, 140 (3), 1469–1481. DOI: https://doi.org/10.1007/s10973-019-08876-4
- 102S. Rainieri, F. Bozzoli, G. Pagliarini, Int. J. Heat Mass Transf. 2012, 55 (1–3), 498–504. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.030
- 103F. U. Zaman, K. Qureshi, I. Haq, W. Siddique, Ann. Nucl. Energy 2017, 109, 705–711. DOI: https://doi.org/10.1016/j.anucene.2017.06.002
- 104M. Đorđević, V. Stefanović, M. Vukić, M. Mančić, Facta Universitatis, Ser.: Mech. Eng. 2017, 15 (3), 495–506. DOI: https://doi.org/10.22190/FUME171001027D
10.22190/FUME171001027D Google Scholar
- 105Y. Li, J. Wu, H. Wang, L. Kou, X. Tian, Energy Procedia 2012, 17, 791–800. DOI: https://doi.org/10.1016/j.egypro.2012.02.172
- 106A. Zachár, Int. J. Heat Mass Transf. 2010, 53 (19–20), 3928–3939. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.011
- 107G. Slavković, S. J. Budimir, I. M. Rakonjac, M. S. Jarić, N. J. Budimir, Tehno-Ekonomska Analiza Bubnjastih Izmjenjivača Topline s Paralelnim Zavojnim Cijevima 2014, 861–866. https://machinery.mas.bg.ac.rs/handle/123456789/1851
- 108S. Sanaye, H. Hajabdollahi, Appl. Therm. Eng. 2010, 30 (14–15), 1937–1945. DOI: https://doi.org/10.1016/j.applthermaleng.2010.04.018
- 109 statista, https://www.statista.com/statistics/1369634/business-electricity-price-worldwide-in-selected-countries/ (Accessed on February 14, 2024).
- 110A. C. Caputo, P. M. Pelagagge, P. Salini, Appl. Therm. Eng. 2008, 28 (10), 1151–1159. DOI: https://doi.org/10.1016/j.applthermaleng.2007.08.010
- 111 U. S. Minnesota, Protolabs Network, https://www.hubs.com/manufacture/order/6d2c29a7-9cdc-4369-93b1-ea64c2f3aeba/quote/aa13c4b2-a4a1-4a73-be1b-f4553d51f487 (Accessed on February 13, 2024).
- 112J. Yoon, Y. Ryu, S. Choi, M. Lee, S. K. Zee, International conference on global environment and advanced nuclear power plants, Atomic Energy Society of Japan, 2003.
- 113S. Ganeshan, M. R. Rao, Int. J. Heat Mass Transfer. 1982, 25 (7), 1013–1022. DOI: https://doi.org/10.1016/0017-9310(82)90076-X
10.1016/0017-9310(82)90076-X Google Scholar
- 114Z. S. Kareem, M. N. Mohd Jaafar, T. M. Lazim, S. Abdullah, A. F. Abdulwahid, Exp. Therm. Fluid Sci. 2015, 68, 22–38. DOI: https://doi.org/10.1016/j.expthermflusci.2015.04.012
- 115V. D. Zimparov, N. L. Vulchanov, L. B. Delov, Int. J. Heat Mass Transf. 1991, 34 (9), 2187–2197. DOI: https://doi.org/10.1016/0017-9310(91)90045-G
- 116V. Srinivasan, R. N. Christensen, Exp. Therm. Fluid Sci. 1992, 5 (6), 820–827. DOI: https://doi.org/10.1016/0894-1777(92)90126-P
- 117S. Garimella, R. N. Christensen, J. Heat Transfer 1995, 117, 61–68. DOI: https://doi.org/10.1115/1.2822324
- 118S. Garimella, R. N. Christensen, Trans. ASME 1995, 117, 54–60. DOI: https://doi.org/10.1115/1.2822323
- 119S. Garimella, Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Annuli with Spirally-Fluted Inner Tubes, The Ohio State University, Columbus, OH 1990.
- 120S. Garimella, R. N. Christensen, Heat Transfer Eng. 1997, 18 (1), 34–46. DOI: https://doi.org/10.1080/01457639708939888
- 121M. M. Salim, D. M. France, C. B. Panchal, J. Enhanced Heat Transfer 1999, 6 (5), 327–341. DOI: https://doi.org/10.1615/JEnhHeatTransf.v6.i5.10
10.1615/JEnhHeatTransf.v6.i5.10 Google Scholar
- 122R. L. Webb, R. Narayanamurthy, P. Thors, Trans. ASME 2000, 122, 134–142. DOI: https://doi.org/10.1115/1.521444
10.1115/1.521444 Google Scholar
- 123P. Naphon, M. Nuchjapo, J. Kurujareon, Energy Convers. Manag. 2006, 47 (18–19), 3031–3044. DOI: https://doi.org/10.1016/j.enconman.2006.03.023
- 124P. G. Vicente, A. Garcı́a, A. Viedma, Int. J. Heat Mass Transf. 2004, 47 (4), 671–681. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005
- 125P. G. Vicente, A. Garcı́a, A. Viedma, Int. Comm. Heat Mass Transfer 2004, 31 (5), 651–662. DOI: https://doi.org/10.1016/S0735-1933(04)00052-1
10.1016/S0735-1933(04)00052-1 Google Scholar
- 126L. Liu, X. Ling, H. Peng, Exp. Therm. Fluid Sci. 2013, 44, 275–284. DOI: https://doi.org/10.1016/j.expthermflusci.2012.06.019
10.1016/j.expthermflusci.2012.06.019 Google Scholar
- 127J. Lu, X. Sheng, J. Ding, J. Yang, Exp. Therm. Fluid Sci. 2013, 47, 180–185. DOI: https://doi.org/10.1016/j.expthermflusci.2013.01.014
10.1016/j.expthermflusci.2013.01.014 Google Scholar
- 128S. Yarmohammadi, M. Farhadi, Exp. Therm. Fluid Sci. 2016, 79, 1–12. DOI: https://doi.org/10.1016/j.expthermflusci.2016.06.012
- 129J. Y. Qian, M. R. Chen, Z. Wu, X. L. Liu, Z. J. Jin, B. Sundén, Numeri. Heat Transf. A Appl. 2018, 73 (8), 565–582. DOI: https://doi.org/10.1080/10407782.2018.1459381
- 130Z. S. Kareem, Laminar Flow Heat Transfer Enhancement in Multy-Start Spirally Corrugated Tubes, Universiti Teknologi Malaysia, Skudai 2016.