Investigation of Botanical Origin, Phenolic Compounds, Carotenoids, and Antioxidant Properties of Monofloral and Multifloral Bee Bread
Duygu Nur Çobanoğlu
Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000 Bingöl, Turkey
Search for more papers by this authorMehmet Emin Şeker
Department of Crop and Animal Production, Espiye Vocational School, Giresun University, Espiye, Giresun, 28600 Turkey
Search for more papers by this authorİlginç Kizilpinar Temizer
Vocational High School of Health Services, Giresun University, Giresun, 28200 Turkey
Search for more papers by this authorCorresponding Author
Ayşegül Erdoğan
Ege University Application and Research Center For Testing and Analysis (EGE MATAL), İzmir, 35100 Turkey
Search for more papers by this authorDuygu Nur Çobanoğlu
Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000 Bingöl, Turkey
Search for more papers by this authorMehmet Emin Şeker
Department of Crop and Animal Production, Espiye Vocational School, Giresun University, Espiye, Giresun, 28600 Turkey
Search for more papers by this authorİlginç Kizilpinar Temizer
Vocational High School of Health Services, Giresun University, Giresun, 28200 Turkey
Search for more papers by this authorCorresponding Author
Ayşegül Erdoğan
Ege University Application and Research Center For Testing and Analysis (EGE MATAL), İzmir, 35100 Turkey
Search for more papers by this authorAbstract
Bee bread is a unique natural product made by bees and good for human health. It has many bioactive molecules that can treat or prevent diseases. In this study, melissopalynological methods were used to examine five bee bread samples. Major plant sources found in bee bread were Lotus spp., Trifolium spp., and Xeranthemum spp., which are from the Fabaceae and Asteraceae families. Then, the amount of phenolic compounds and major carotenoids in bee bread (BB) samples were quantified. Gallic acid, caffeic acid, quercetin, and kaempferol were found in all BB samples, with β-carotene being the most abundant carotenoid in all but BB1. In addition, the total phenolic/flavonoid content and antioxidant activities of all BB samples were determined. Total flavonoid, total phenolic, DPPH⋅, and ABTS⋅+ values were varied between 5.6–10.00 mg GAE/g DW, 1.2–4.3 mg QE/g DW, 1.2–5.5 mg TEAC/g DW, and 2.6–15.4 mg TEAC/g DW, respectively.
Graphical Abstract
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cbdv202201124-sup-0001-misc_information.pdf120.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. A. M. De Melo, L. M. Estevinho, M. M. Moreira, C. Delerue-Matos, A. d S de Freitas, O. M. Barth, L. B. de Almeida-Muradian, ‘A multivariate approach based on physicochemical parameters and biological potential for the botanical and geographical discrimination of Brazilian bee pollen’, Food Biosci. 2018, 25, 91–110.
- 2F. Giampieri, J. L. Quiles, D. Cianciosi, T. Y. Forbes-Hernández, F. J. Orantes-Bermejo, J. M. Alvarez-Suarez, M. Battino, ‘Bee products: an emblematic example of underutilized sources of bioactive compounds’, J. Agric. Food Chem. 2022, 70, 6833–6848.
- 3M. Madejczyk, D. Baralkiewicz, ‘Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES’, Anal. Chim. Acta 2008, 617, 11–17.
- 4D. Clarke, D. Robert, ‘Predictive modelling of honey bee foraging activity using local weather conditions’, Apidologie 2018, 49, 386–396.
- 5M. Thakur, V. Nanda, ‘Composition and functionality of bee pollen: A review’, Trends Food Sci. Technol. 2020, 98, 82–106.
- 6C. Kast, V. Kilchenmann, H. Reinhard, K. Bieri, O. Zoller, ‘Pyrrolizidine alkaloids: The botanical origin of pollen collected during the flowering period of Echium vulgare and the stability of pyrrolizidine alkaloids in bee bread’, Molecules 2019, 24, 2214.
- 7S. M. Mohammad, N.-K. Mahmud Ab Rashid, N. Zawawi, ‘Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from Malaysia’, J. Food Qual. 2020, 2020.
- 8M. Kieliszek, K. Piwowarek, A. M. Kot, S. Błażejak, A. Chlebowska-Śmigiel, I. Wolska, ‘Pollen and bee bread as new health-oriented products: A review’, Trends Food Sci. Technol. 2018, 71, 170–180.
- 9F. Sobral, R. C. Calhelha, L. Barros, M. Dueñas, A. Tomás, C. Santos-Buelga, M. Vilas-Boas, I. C. Ferreira, ‘Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal’, Molecules 2017, 22, 248.
- 10N. E. Bayram, Y. C. Gercek, S. Çelik, N. Mayda, A. Ž. Kostić, A. M. Dramićanin, A. Özkök, ‘Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin-similarities and differences’, Arab. J. Chem. 2021, 14, 103004.
- 11Z. A. Othman, W. S. Wan Ghazali, L. Noordin, N. A. Mohd. Yusof, M. Mohamed, ‘Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats’, Antioxidants 2019, 9, 33.
- 12N. A. Didaras, I. Kafantaris, T. G. Dimitriou, C. Mitsagga, K. Karatasou, I. Giavasis, D. Stagos, G. D. Amoutzias, F. Hatjina, D. Mossialos, ‘Biological Properties of Bee Bread Collected from Apiaries Located across Greece’, Antibiotics 2021, 10, 555.
- 13F. Jaya, D. Rosyidi, L. Radiati, S. Minarti, A. Susilo, R. Muslimah, M. Husolli, in IOP Conference Series: Earth and Environmental Science, Vol. 475, IOP Publishing, 2020, p. 012033.
- 14N. Mayda, A. Özkök, N. Ecem Bayram, Y. C. Gerçek, K. Sorkun, ‘Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles’, J. Food Meas. Charact. 2020, 14, 1795–1809.
- 15K. Pełka, O. Otłowska, R. W. Worobo, P. Szweda, ‘Bee bread exhibits higher antimicrobial potential compared to bee pollen’, Antibiotics 2021, 10, 125.
- 16S. T. Asma, O. Bobiş, V. Bonta, U. Acaroz, S. R. A. Shah, F. R. Istanbullugil, D. Arslan-Acaroz, ‘General nutritional profile of bee products and their potential antiviral properties against mammalian viruses’, Nutrients 2022, 14, 3579.
- 17P. Filannino, R. Di Cagno, O. Vincentini, D. Pinto, A. Polo, F. Maialetti, A. Porrelli, M. Gobbetti, ‘Nutrients bioaccessibility and anti-inflammatory features of fermented bee pollen: A comprehensive investigation’, Front. Microbiol. 2021, 12, 622091.
- 18G. Dervişoğlu, D. N. Çobanoğlu, S. Yelkovan, D. Karahan, Y. Cakir, S. Koçyiğit, ‘Comprehensive Study on BeeBread: Palynological Analysis, Chemical Composition, Antioxidant and Cytotoxic Activities’, Int. J. Second. Metab. 2022, 9, 166–177.
10.21448/ijsm.1066884 Google Scholar
- 19A. Tomás, S. I. Falcão, P. Russo-Almeida, M. Vilas-Boas, ‘Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity’, J. Apic. Res. 2017, 56, 219–230.
- 20R. R. de Souza, V. H. R. de Abreu, J. S. de Novais, ‘Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017’, Palynology 2019, 43, 690–700.
- 21L. Behçet, Y. Yapar, ‘Matan Dağı (Bingöl) florasında arıcılık açısından önemli bitkiler’, Biyolojik Çeşitlilik ve Koruma 2019, 12, 149–159.
- 22A. Ilcim, L. Behçet, ‘Astragalus topalanense (Fabaceae), a new species from Turkey’, Turk. J. Bot. 2016, 40, 74–80.
- 23A. C. Urcan, A. D. Criste, D. S. Dezmirean, O. Bobiş, V. Bonta, F. V. Dulf, R. Mărgăoan, M. Cornea-Cipcigan, M. G. Campos, ‘Botanical origin approach for a better understanding of chemical and nutritional composition of beebread as an important value-added food supplement’, LWT-Food Sci. Technol. 2021, 142, 111068.
- 24M. G. Campos, S. Bogdanov, L. B. de Almeida-Muradian, T. Szczesna, Y. Mancebo, C. Frigerio, F. Ferreira, ‘Pollen composition and standardisation of analytical methods’, J. Apic. Res. 2008, 47, 154–161.
- 25K. Komosinska-Vassev, P. Olczyk, J. Kaźmierczak, L. Mencner, K. Olczyk, ‘Bee pollen: chemical composition and therapeutic application’, Evid.-Based Complement. Altern. Med. 2015, 2015.
- 26F. J. Chamorro, D. León, P. M. Montoya-Pfeiffer, V. M. Solarte, G. Nates-Parra, ‘Botanical origin and geographic differentiation of bee-pollen produced in high mountains from the Colombian eastern Andes’, Grana 2017, 56, 386–397.
- 27R. Polat, S. Selvi, ‘A Research on plant taxa with invasive character in Bingöl (City center) and surroundings’, 2020.
- 28M. Kaplan, Ö. Karaoglu, N. Eroglu, S. Silici, ‘Fatty acid and proximate composition of bee bread’, Food Sci. Biotechnol. 2016, 54, 497–504.
- 29M. Koçyiğit, M. K. T. DAŞTAN, M. Koçyiğit, M. Keskin, T. Daştan, ‘Pollen morphology of some Trifolium species which are favorite plants of honey bees in Istanbul’, Fac. Pharm. İst. Univ. 2013, 43, 85–94.
- 30A. Ž. Kostić, D. D. Milinčić, M. B. Barać, M. Ali Shariati, Ž. L. Tešić, M. B. Pešić, ‘The application of pollen as a functional food and feed ingredient – the present and perspectives’, Biomol. Eng. 2020, 10, 84.
- 31M. Bakour, N. S. Al-Waili, N. El Menyiy, H. Imtara, A. C. Figuira, T. Al-Waili, B. Lyoussi, ‘Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity’, J. Food Sci. Technol. 2017, 54, 4205–4212.
- 32C. Habryka, M. Kruczek, B. Drygaś, ‘Bee products used in apitherapy’, World Sci. News 2016, 48, 254–258.
- 33V. Aylanc, S. I. Falcão, S. Ertosun, M. Vilas-Boas, ‘From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread’, Trends Food Sci. Technol. 2021, 109, 464–481.
- 34V. Isidorov, A. Isidorova, L. Sczczepaniak, U. Czyżewska, ‘Gas chromatographic-mass spectrometric investigation of the chemical composition of beebread’, Food Chem. 2009, 115, 1056–1063.
- 35V. Aylanc, A. Tomás, P. Russo-Almeida, S. I. Falcão, M. Vilas-Boas, ‘Assessment of bioactive compounds under simulated gastrointestinal digestion of bee pollen and bee bread: Bioaccessibility and antioxidant activity’, Antioxidants 2021, 10, 651.
- 36D. Tavdidishvili, T. Khutsidze, M. Pkhakadze, M. Vanidze, A. Kalandia, ‘Flavonoids in Georgian bee bread and bee pollen’, J. Chem. Eng. 2014, 8.
- 37F. Dranca, F. Ursachi, M. Oroian, ‘Bee bread: Physicochemical characterization and phenolic content extraction optimization’, Food 2020, 9, 1358.
- 38T. Sawicki, M. Starowicz, L. Kłębukowska, P. Hanus, ‘The profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products’, Molecules 2022, 27, 1301.
- 39I. L. Lawag, O. Yoo, L. Y. Lim, K. Hammer, C. Locher, ‘Optimisation of bee pollen extraction to maximise extractable antioxidant constituents’, Antioxidants 2021, 10, 1113.
- 40K. Chew, M. Khoo, S. Ng, Y. Y. Thoo, W. W. Aida, C. W. Ho, ‘Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts’, Int. Food Res. J. 2011, 18, 1427.
- 41D. N. Çobanoğlu, İ. Kizilpinar Temizer, E. D. Candan, U. Yolcu, A. Güder, ‘Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics’, Eur. Food Res. Technol. 2022, 1–19.
- 42N. Harif Fadzilah, M. F. Jaapar, R. Jajuli, W. A. Wan Omar, ‘Total phenolic content, total flavonoid and antioxidant activity of ethanolic bee pollen extracts from three species of Malaysian stingless bee’, J. Apic. Res. 2017, 56, 130–135.
- 43E. Muñoz, P. Velásquez, K. Rodriguez, G. Montenegro, A. Giordano, ‘Influence of Brassica campestris and Galega officinalis on antioxidant activity of bee pollen’, Rev. Bras. Farmacogn. 2020, 30, 444–449.
- 44I. Eva, K. Miroslava, F. Helena, P. Jana, H. Jana, B. Valerii, V. Serhii, A. Leonora, S. Zuzana, M. Janette, ‘Bee bread-perspective source of bioactive compounds for future’, Potravinarstvo 2015, 9, 592–598.
10.5219/558 Google Scholar
- 45N. Kutlu, Y. C. Gercek, N. Ecem Bayram, ‘The Effect of Different Drying Methods on Bioactive and Nutrition Contents of Bee Bread and Mathematical Modeling of Drying Characteristics’, Chem. Biodiversity 2022, 20, e20220096.
- 46R. K. Saini, S. H. Nile, S. W. Park, ‘Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities’, Int. Food Res. J. 2015, 76, 735–750.
- 47V. Sant′Anna, P. D. Gurak, L. D. F. Marczak, I. C. Tessaro, ‘Tracking bioactive compounds with color changes in foods – A review’, Dyes Pigm. 2013, 98, 601–608.
- 48D. Domínguez-Valhondo, D. Bohoyo Gil, M. T. Hernández, D. González-Gómez, ‘Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen’, Int. J. Food Sci. 2011, 46, 2204–2211.
- 49F. Schulte, J. Mäder, L. W. Kroh, U. Panne, J. Kneipp, ‘Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy’, Anal. Chem. 2009, 81, 8426–8433.
- 50X. Xu, J. Dong, T. Li, W. He, L. Sun, ‘Influence of storage temperature on lipid oxidation, stale flavor formation and discoloration in lotus (Nelumbo nucifera) bee pollen’, J. Food Process. Preserv. 2013, 37, 171–178.
- 51C. Gardana, C. Del Bo, M. C. Quicazán, A. R. Corrrea, P. Simonetti, ‘Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas’, J. Food Compos. Anal. 2018, 73, 29–38.
- 52K.-W. Kong, H.-E. Khoo, K. N. Prasad, A. Ismail, C.-P. Tan, N. F. Rajab, ‘Revealing the power of the natural red pigment lycopene’, Molecules 2010, 15, 959–987.
- 53C. Y. Salazar–González, F. J. Rodríguez-Pulido, C. M. Stinco, A. Terrab, C. Díaz-Moreno, C. Fuenmayor, F. J. Heredia, ‘Carotenoid profile determination of bee pollen by advanced digital image analysis’, Comput. Electron. Agric. 2020, 175, 105601.
- 54V. A. S. de Arruda, A. A. S. Pereira, A. S. de Freitas, O. M. Barth, L. B. de Almeida-Muradian, ‘Dried bee pollen: B complex vitamins, physicochemical and botanical composition’, J. Food Compos. Anal. 2013, 29, 100–105.
- 55Z. L. Sarungallo, P. Hariyadi, N. Andarwulan, E. H. Purnomo, M. Wada, ‘Analysis of α-cryptoxanthin, β-cryptoxanthin, α-carotene, and β-carotene of Pandanus conoideus oil by high-performance liquid chromatography (HPLC)’, Procedia Food Sci. 2015, 3, 231–243.
10.1016/j.profoo.2015.01.026 Google Scholar
- 56O. M. Barth, A. S. Freitas, É. S. Oliveira, R. A. Silva, F. M. Maester, R. R. Andrella, G. M. Cardozo, ‘Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization’, An. Acad. Bras. Cienc. 2010, 82, 893–902.
- 57A. Erdoğan, A. B. Karataş, Z. Demirel, M. Dalay, ‘Induction of lutein production in Scenedesmus obliquusunder different culture conditions prior to its semipreparative isolation’, Turk. J. Chem. 2022, 46, 796–804.
- 58A. Erdoğan, A. Çağır, M. C. Dalay, A. E. Eroğlu, ‘Composition of carotenoids in Scenedesmus protuberans: Application of chromatographic and spectroscopic methods’, Food Anal. Methods 2015, 8, 1970–1978.
- 59A. Erdoğan, Z. Demirel, A. E. Eroğlu, M. C. Dalay, ‘Carotenoid profile in Prochlorococcus sp. and enrichment of lutein using different nitrogen sources’, J. Appl. Phycol. 2016, 28, 3251–3257.
- 60M. E. Şeker, E. Ay, A. A. Kara-Çelik, R. Hüseyinoğlu, D. Efe, ‘First determination of some phenolic compounds and antimicrobial activities ofGeranium ibericum subsp. jubatum: A plant endemic to Turkey’, Turk. J. Chem. 2021, 45, 60–70.
- 61E. Ulusoy, S. Kolayli, ‘Phenolic composition and antioxidant properties of Anzer bee pollen’, J. Food Biochem. 2014, 38, 73–82.
- 62C.-C. Chang, M.-H. Yang, H.-M. Wen, J.-C. Chern, ‘Estimation of total flavonoid content in propolis by two complementary colometric methods’, J. Food Drug Anal. 2002, 10, 3.
- 63K. R. Freire, A. C. Lins, M. C. Dórea, F. A. Santos, C. A. Camara, T. M. Silva, ‘Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from Bahia, Brazil’, Molecules 2012, 17, 1652–1664.
- 64J. S. Stanojević, L. P. Stanojević, D. J. Cvetković, B. R. Danilović, ‘Chemical composition, antioxidant and antimicrobial activity of the turmeric essential oil (Curcuma longa L.)’, Advanced technologies 2015, 4, 19–25.
10.5937/savteh1502019S Google Scholar
- 65P. Singh, M. Baranwal, S. M. Reddy, ‘Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress’, Pharmaceutical biology 2016, 54, 2269–2275.
- 66R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, ‘Antioxidant activity applying an improved ABTS radical cation decolorization assay’, Free Radical Biol. Med. 1999, 26, 1231–1237.