Multiple-length scale investigation of Pt/C degradation by identical-location transmission electron microscopy
Jimin Kwag
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSungin Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSungsu Kang
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Jungwon Park
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea
Advanced Institutes of Convergence Technology, Seoul National University, Gyeonggi-do, Republic of Korea
Correspondence
Jungwon Park, School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorJimin Kwag
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSungin Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorSungsu Kang
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Jungwon Park
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea
Advanced Institutes of Convergence Technology, Seoul National University, Gyeonggi-do, Republic of Korea
Correspondence
Jungwon Park, School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Email: [email protected]
Search for more papers by this authorAbstract
Pt-based electrocatalysts on the cathode side of proton exchange membrane fuel cells (PEMFCs) generally undergo severe degradation, which contributes to the short life span of PEMFCs. Thus, it is crucial to understand the structural degradation of Pt-based electrocatalysts. Here, various degradation mechanisms of individual Pt nanoparticles supported on Vulcan carbon during load-cycle accelerated stress tests were investigated and quantified by identical-location transmission electron microscopy (IL-TEM). The atomic-scale IL-STEM imaging revealed the formation of Pt single atoms on the carbon support, which resulted from the dissolution of nanoparticles, and the following pathway change in the oxygen reduction reaction (ORR) was analyzed by rotating ring-disk electrode tests. Our study provides new insight for understanding the relationship between the decline in the ORR activity and the formation of Pt atomic species resulting from the electrochemical degradation of Pt/C.
Supporting Information
Filename | Description |
---|---|
bkcs12690-sup-0001-Supinfo.docxWord 2007 document , 5.1 MB | Data S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K. J. Mayrhofer, Beilstein J. Nanotechnol. 2014, 5, 44.
- 2R. L. Borup, A. Kusoglu, K. C. Neyerlin, R. Mukundan, R. K. Ahluwalia, D. A. Cullen, K. L. More, A. Z. Weber, D. J. Myers, Curr. Opin. Electrochem. 2020, 21, 192.
- 3H. Y. Kim, J. Y. Kim, S. H. Joo, Bull. Korean Chem. Soc. 2021, 42, 724.
- 4L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B. Y. Xia, Acc. Chem. Res. 2021, 54, 311.
- 5N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, Y.-E. Sung, Nano Today 2014, 9, 433.
- 6Y.-J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak, B. Fang, D. P. Wilkinson, Energy Environ. Sci. 2018, 11, 258.
- 7D. Y. Chung, J. M. Yoo, Y. E. Sung, Adv. Mater. 2018, 30, 1704123.
- 8S. G. Ji, H. C. Kwon, T.-H. Kim, U. Sim, C. H. Choi, ACS Catal. 2022, 12, 7317.
- 9S. Kreitmeier, A. Wokaun, F. N. Büchi, J. Electrochem. Soc. 2012, 159, F787.
- 10J. Qian, M. Shen, S. Zhou, C.-T. Lee, M. Zhao, Z. Lyu, Z. D. Hood, M. Vara, K. D. Gilroy, K. Wang, Mater. Today 2018, 21, 834.
- 11G. S. Harzer, A. Orfanidi, H. El-Sayed, P. Madkikar, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, F770.
- 12S. W. Han, D. H. Kim, I. H. Kim, Y. D. Kim, Bull. Korean Chem. Soc. 2016, 37, 674.
- 13H. L. Xin, E. A. Pach, R. E. Diaz, E. A. Stach, M. Salmeron, H. Zheng, ACS Nano 2012, 6, 4241.
- 14H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ. 2005, 56, 9.
- 15E. Pizzutilo, S. Geiger, J.-P. Grote, A. Mingers, K. J. J. Mayrhofer, M. Arenz, S. Cherevko, J. Electrochem. Soc. 2016, 163, F1510.
- 16Z.-M. Zhou, Z.-G. Shao, X.-P. Qin, X.-G. Chen, Z.-D. Wei, B.-L. Yi, Int. J. Hydrog. 2010, 35, 1719.
- 17P. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H. Gasteiger, J. Electrochem. Soc. 2005, 152, A2256.
- 18A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, ECS Trans. 2011, 41, 775.
- 19D. Johnson, D. Napp, S. Bruckenstein, Electrochim. Acta 1970, 15, 1493.
- 20S. Cherevko, G. P. Keeley, S. Geiger, A. R. Zeradjanin, N. Hodnik, N. Kulyk, K. J. Mayrhofer, ChemElectroChem 2015, 2, 1471.
- 21A. Pavlišič, P. Jovanovič, V. S. Šelih, M. Šala, N. Hodnik, M. Gaberšček, J. Electrochem. Soc. 2018, 165, F3161.
- 22Y. Li, Z. Zheng, X. Chen, Y. Liu, M. Liu, J. Li, D. Xiong, J. Xu, Int. J. Hydrog. 2020, 45, 23519.
- 23S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 2008, 176, 444.
- 24R. Sharma, S. M. Andersen, Appl. Catal. B: Environ. 2018, 239, 636.
- 25Z.-B. Wang, P.-J. Zuo, Y.-Y. Chu, Y.-Y. Shao, G.-P. Yin, Int. J. Hydrog. 2009, 34, 4387.
- 26Y. Zhang, S. Chen, Y. Wang, W. Ding, R. Wu, L. Li, X. Qi, Z. Wei, J. Power Sources 2015, 273, 62.
- 27L. Castanheira, W. O. Silva, F. H. Lima, A. Crisci, L. Dubau, F. d. R. Maillard, ACS Catal. 2015, 5, 2184.
- 28J. C. Meier, C. Galeano, I. Katsounaros, A. A. Topalov, A. Kostka, F. Schüth, K. J. Mayrhofer, ACS Catal. 2012, 2, 832.
- 29K. J. Mayrhofer, J. C. Meier, S. J. Ashton, G. K. Wiberg, F. Kraus, M. Hanzlik, M. Arenz, Electrochem. Commun. 2008, 10, 1144.
- 30H. Yun, J. Kim, W. Choi, M. H. Han, J. H. Park, H.-s. Oh, K. Kwak, Y. J. Hwang, Electrochim. Acta 2021, 371, 137795.
- 31A. Zana, J. Speder, M. Roefzaad, L. Altmann, M. Bäumer, M. Arenz, J. Electrochem. Soc. 2013, 160, F608.
- 32K. J. Mayrhofer, S. J. Ashton, J. C. Meier, G. K. Wiberg, M. Hanzlik, M. Arenz, J. Power Sources 2008, 185, 734.
- 33K. Schlögl, M. Hanzlik, M. Arenz, J. Electrochem. Soc. 2012, 159, B677.
- 34F. J. Perez-Alonso, C. F. Elkjær, S. S. Shim, B. L. Abrams, I. E. Stephens, I. Chorkendorff, J. Power Sources 2011, 196, 6085.
- 35K. Higashi, G. Samjeské, S. Takao, T. Kaneko, O. Sekizawa, T. Uruga, Y. Iwasawa, J. Phys. Chem. C 2017, 121, 22164.
- 36A. A. Topalov, S. Cherevko, A. R. Zeradjanin, J. C. Meier, I. Katsounaros, K. J. Mayrhofer, Chem. Sci. 2014, 5, 631.
- 37R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, Chem. Rev. 2007, 107, 3904.
- 38Z. Zheng, F. Yang, C. Lin, F. Zhu, S. Shen, G. Wei, J. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 35088.
- 39S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Am. Ethnol. 2016, 55, 2058.