Pharmacokinetic control of orally dosed cyclosporine A with mucosal drug delivery system
Kohei Yamada
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorKurt D. Ristroph
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorYuuki Kaneko
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorHoang D. Lu
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorRobert K. Prud’homme
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorHideyuki Sato
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorCorresponding Author
Satomi Onoue
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Correspondence
Satomi Onoue, Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
Email: [email protected]
Search for more papers by this authorKohei Yamada
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorKurt D. Ristroph
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorYuuki Kaneko
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorHoang D. Lu
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorRobert K. Prud’homme
Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
Search for more papers by this authorHideyuki Sato
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Search for more papers by this authorCorresponding Author
Satomi Onoue
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
Correspondence
Satomi Onoue, Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
Email: [email protected]
Search for more papers by this authorAbstract
This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 μg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 μg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Atuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology - Gastrointestinal and Liver Physiology, 280(5), G922–G929. https://doi.org/10.1152/ajpgi.2001.280.5.G922
- Craparo, E. F., Porsio, B., Sardo, C., Giammona, G., & Cavallaro, G. (2016). Pegylated polyaspartamide-polylactide-based nanoparticles penetrating cystic fibrosis artificial mucus. Biomacromolecules, 17(3), 767–777. https://doi.org/10.1021/acs.biomac.5b01480
- Da Silva, F. L. O., Marques, M. B. F., Kato, K. C., & Carneiro, G. (2020). Nanonization techniques to overcome poor water-solubility with drugs. Expert Opinion on Drug Discovery, 15(7), 853–864. https://doi.org/10.1080/17460441.2020.1750591
- Ensign, L. M., Henning, A., Schneider, C. S., Maisel, K., Wang, Y. Y., Porosoff, M. D., Cone, R., & Hanes, J. (2013). Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Molecular Pharmaceutics, 10(6), 2176–2182. https://doi.org/10.1021/mp400087y
- Flechner, S. M. (1983). Cyclosporine: A new and promising immunosuppressive agent. Urologic Clinics of North America, 10(2), 263–275. https://doi.org/10.1016/s0094-0143(21)01437-3
- Hu, X., Zhang, J., Yu, Z., Xie, Y., He, H., Qi, J., Dong, X., Lu, Y., Zhao, W., & Wu, W. (2015). Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomedicine, 11(8), 1939–1948. https://doi.org/10.1016/j.nano.2015.06.013
- Hwang, T. L., Aljuffali, I. A., Lin, C. F., Chang, Y. T., & Fang, J. Y. (2015). Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: Lipid nanoparticles versus polymeric nanoparticles. International Journal of Nanomedicine, 10, 371–385. https://doi.org/10.2147/IJN.S73017
- Ina, K., Kusugami, K., Shimada, M., Tsuzuki, T., Nishio, Y., Binion, D. G., Imada, A., & Ando, T. (2002). Suppressive effects of cyclosporine A on neutrophils and T cells may be related to therapeutic benefits in patients with steroid-resistant ulcerative colitis. Inflammatory Bowel Diseases, 8(1), 1–9. https://doi.org/10.1097/00054725-200201000-00001
- Johnson, B. K., & Prud'homme, R. K. (2003). Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer. Australian Journal of Chemistry, 56(10), 1021–1024. https://doi.org/10.1071/ch03115
- Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmacy, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032
- Lai, S. K., O'Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R., & Hanes, J. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1482–1487. https://doi.org/10.1073/pnas.0608611104
- Laine, A. L., Gravier, J., Henry, M., Sancey, L., Bejaud, J., Pancani, E., Wiber, M., Texier, I., Coll, J. L., Benoit, J. P., & Passirani, C. (2014). Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring. Journal of Controlled Release, 188, 1–8. https://doi.org/10.1016/j.jconrel.2014.05.042
- Leal, J., Smyth, H. D. C., & Ghosh, D. (2017). Physicochemical properties of mucus and their impact on transmucosal drug delivery. International Journal of Pharmacy, 532(1), 555–572. https://doi.org/10.1016/j.ijpharm.2017.09.018
- Lee, S. S., Tan, A. W., & Giam, Y. C. (2004). Cyclosporin in the treatment of severe atopic dermatitis: A retrospective study. Annals Academy of Medicine Singapore, 33(3), 311–313. https://doi.org/10.47102/annals-acadmedsg.v33n3p311
- Lehr, C.-M., Poelma Fred, G. J., Junginger, H. E., & Tukker, J. J. (1991). An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. International Journal of Pharmacy, 70(3), 235–240. https://doi.org/10.1016/0378-5173(91)90287-x
- Lin, W., Zhang, W., Liu, S., Li, Z., Hu, X., Xie, Z., Duan, C., & Han, G. (2019). Engineering pH-responsive BODIPY nanoparticles for tumor selective multimodal imaging and phototherapy. ACS Applied Materials & Interfaces, 11(47), 43928–43935. https://doi.org/10.1021/acsami.9b16403
- Liu, Y., Cheng, C. Y., Liu, Y., Prud'homme, R. K., & Fox, R. O. (2008). Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering and Science, 63(11), 2829–2842. https://doi.org/10.1016/j.ces.2007.10.020
- Ma, Y., He, H., Xia, F., Li, Y., Lu, Y., Chen, D., Qi, J., Zhang, W., & Wu, W. (2017). In vivo fate of lipid-silybin conjugate nanoparticles: Implications on enhanced oral bioavailability. Nanomedicine, 13(8), 2643–2654. https://doi.org/10.1016/j.nano.2017.07.014
- Netsomboon, K., & Bernkop-Schnurch, A. (2016). Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 98, 76–89. https://doi.org/10.1016/j.ejpb.2015.11.003
- Norris, D. A., & Sinko, P. J. (1997). Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. Journal of Applied Polymer Science, 63(11), 1481–1492. https://doi.org/10.1002/(sici)1097-4628(19970314)63:11<1481::aid-app10>3.0.co;2-5
10.1002/(SICI)1097-4628(19970314)63:11<1481::AID-APP10>3.0.CO;2-5 CAS Web of Science® Google Scholar
- Onoue, S., Sato, H., Kawabata, Y., Mizumoto, T., Hashimoto, N., & Yamada, S. (2009). In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. Journal of Controlled Release, 138(1), 16–23. https://doi.org/10.1016/j.jconrel.2009.04.014
- Pagels, R. F., Edelstein, J., Tang, C., & Prud'homme, R. K. (2018). Controlling and predicting nanoparticle formation by block copolymer directed rapid precipitations. Nano Letters, 18(2), 1139–1144. https://doi.org/10.1021/acs.nanolett.7b04674
- Ponchel, G., Montisci, M.-J., Dembri, A., Durrer, C., & Duchêne, D. (1997). Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 44(1), 25–31. https://doi.org/10.1016/s0939-6411(97)00098-2
- Sato, H., Kaneko, Y., Yamada, K., Ristroph, K. D., Lu, H. D., Seto, Y., Chan, H. K., Prud’homme, R. K., & Onoue, S. (2020). Polymeric nanocarriers with mucus-diffusive and mucus-adhesive properties to control pharmacokinetic behavior of orally dosed cyclosporine A. Journal of Pharmaceutical Sciences, 109(2), 1079–1085. https://doi.org/10.1016/j.xphs.2019.10.043
- Shen, C., Yang, Y., Shen, B., Xie, Y., Qi, J., Dong, X., Zhao, W., Zhu, W., Wu, W., Yuan, H., & Lu, Y. (2017). Self-discriminating fluorescent hybrid nanocrystals: Efficient and accurate tracking of translocation via oral delivery. Nanoscale, 10(1), 436–450. https://doi.org/10.1039/c7nr06052a
- Stalder, T., Zaiter, T., El-Basset, W., Cornu, R., Martin, H., Diab-Assaf, M., & Beduneau, A. (2022). Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology, 481, 153353. https://doi.org/10.1016/j.tox.2022.153353
- Subramanian, D. A., Langer, R., & Traverso, G. (2022). Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. Journal of Nanobiotechnology, 20(1), 362. https://doi.org/10.1186/s12951-022-01539-x
- Suwannateep, N., Banlunara, W., Wanichwecharungruang, S. P., Chiablaem, K., Lirdprapamongkol, K., & Svasti, J. (2011). Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. Journal of Controlled Release, 151(2), 176–182. https://doi.org/10.1016/j.jconrel.2011.01.011
- Suzuki, H., Hamao, S., Seto, Y., Sato, H., Wong, J., Prud'homme, R. K., Chan, H. K., & Onoue, S. (2017). New nano-matrix oral formulation of nanoprecipitated cyclosporine A prepared with multi-inlet vortex mixer. International Journal of Pharmacy, 516(1–2), 116–119. https://doi.org/10.1016/j.ijpharm.2016.11.031
- Wei, X., Shao, B., He, Z., Ye, T., Luo, M., Sang, Y., Liang, X., Wang, W., Luo, S., Yang, S., Zhang, S., Gong, C., Gou, M., Deng, H., Zhao, Y., Yang, H., Deng, S., Zhao, C., Yang, L., … Zhang, Z. (2015). Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Research, 25(2), 237–253. https://doi.org/10.1038/cr.2015.9
- Xia, F., Fan, W., Jiang, S., Ma, Y., Lu, Y., Qi, J., Ahmad, E., Dong, X., Zhao, W., & Wu, W. (2017). Size-dependent translocation of nanoemulsions via oral delivery. ACS Applied Materials & Interfaces, 9(26), 21660–21672. https://doi.org/10.1021/acsami.7b04916
- Xie, Y., Shi, B., Xia, F., Qi, J., Dong, X., Zhao, W., Wu, W., & Lu, Y. (2018). Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. Journal of Controlled Release, 270, 65–75. https://doi.org/10.1016/j.jconrel.2017.11.046
- Yamada, K., Ristroph, K. D., Kaneko, Y., Lu, H. D., Sato, H., Prud’homme, R. K., & Onoue, S. (2021). Clofazimine-loaded mucoadhesive nanoparticles prepared by flash nanoprecipitation for strategic intestinal delivery. Pharmaceutical Research, 38(12), 2109–2118. https://doi.org/10.1007/s11095-021-03144-3