Tunable shape memory property polyurethane with high glass transition temperature composed of polycarbonate diols
Hsu-I Mao
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Methodology (equal), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Chin-Wen Chen
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Correspondence
Chin-Wen Chen and Syang-Peng Rwei, Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
Email: [email protected] and [email protected]
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorLi-Yin Guo
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Methodology (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Syang-Peng Rwei
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Correspondence
Chin-Wen Chen and Syang-Peng Rwei, Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
Email: [email protected] and [email protected]
Search for more papers by this authorHsu-I Mao
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Methodology (equal), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Chin-Wen Chen
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Correspondence
Chin-Wen Chen and Syang-Peng Rwei, Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
Email: [email protected] and [email protected]
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorLi-Yin Guo
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Methodology (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Syang-Peng Rwei
Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan
Correspondence
Chin-Wen Chen and Syang-Peng Rwei, Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
Email: [email protected] and [email protected]
Search for more papers by this authorFunding information: Taiwan Ministry of Science and Technology (MOST, Grant/Award Numbers: 111-2222-E-027-005, 110-2634-F-027-001
Abstract
A series of polyurethane (PU) copolymers was synthesized by 4,4-Methylene diphenyl diisocyanate (MDI) with different polyols of polyether, polyether carbonate (PEC), and polycarbonate with the same molecular weight via a one-step copolymerization process. The synthesized PU containing the ether carbonate groups exhibited a relatively higher glass transition temperature (Tg) above 45°C; in comparison, a value of 12.4°C for the polycarbonate sample and −22°C for the polyether sample was observed. The film made of PEC samples produced by solvent indicated an increment of Tg from 14.6 to 59.6°C after annealing for 6 h, which might be due to the rearrangement of chain structure, which led to an assembling of carbonate groups and resulted in a hindrance of chain mobility. For shape memory examination of the PU copolymers, all samples showed remarkable ability as recovery rate above 91% after 3 cycles test. PEC-type PU polymers reveal potential high-temperature micro shape memory material applications.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1H.-W. Engels, H.-G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, J. Dormish, Angew. Chem., Int. Ed. 2013, 52, 9422.
- 2S. Yu, R. Zhang, Q. Wu, T. Chen, P. Sun, Adv. Mater. 2013, 25, 4912.
- 3M. Li, R. Zhang, X. Li, Q. Wu, T. Chen, P. Sun, Polymer 2018, 148, 127.
- 4L. Verdolotti, A. Salerno, R. Lamanna, A. Nunziata, P. Netti, S. Iannace, Microporous Mesoporous Mater. 2012, 151, 79.
- 5L. Verdolotti, E. Di Maio, G. Forte, M. Lavorgna, S. Iannace, J. Mater. Sci. 2010, 45, 3388.
- 6M. Carme Coll Ferrer, D. Babb, A. J. Ryan, Polymer 2008, 49, 3279.
- 7S. Kumagai, S. Motokucho, R. Yabuki, A. Anzai, T. Kameda, A. Watanabe, H. Nakatani, T. Yoshioka, J. Anal. Appl. Pyrolysis 2017, 126, 337.
- 8L. T. J. Korley, B. D. Pate, E. L. Thomas, P. T. Hammond, Polymer 2006, 47, 3073.
- 9C. P. Christenson, M. A. Harthcock, M. D. Meadows, H. L. Spell, W. L. Howard, M. W. Creswick, R. E. Guerra, R. B. Turner, J. Polym. Sci. Part B Polym. Phys. 1986, 24, 1401.
- 10D. Pedrazzoli, I. Manas-Zloczower, Polymer 2016, 90, 256.
- 11L. Jiang, J. Wu, C. Nedolisa, A. Saiani, H. E. Assender, Macromolecules 2015, 48, 5358.
- 12S. Hu, X. Luo, Y. Li, ChemSusChem 2014, 7, 66.
- 13N. Mahmood, Z. Yuan, J. Schmidt, C. Xu, Renew. Sustain. Energy Rev. 2016, 60, 317.
- 14Z. Petrovic, Polym. Rev. 2008, 48, 109.
- 15A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621.
- 16M. Mikkelsen, M. Jørgensen, F. C. Krebs, Energy Env. Sci 2010, 3, 43.
- 17A. Cyriac, S. H. Lee, J. K. Varghese, J. H. Park, J. Y. Jeon, S. J. Kim, B. Y. Lee, Green Chem. 2011, 13, 3469.
- 18Y. Gao, L. Gu, Y. Qin, X. Wang, F. Wang, J. Polym. Sci. Part Polym. Chem. 2012, 50, 5177.
- 19S. Liu, Y. Qin, X. Chen, X. Wang, F. Wang, Polym. Chem. 2014, 5, 6171.
- 20J. Langanke, A. Wolf, J. Hofmann, K. Böhm, M. A. Subhani, T. E. Müller, W. Leitner, C. Gürtler, Green Chem. 1865, 2014, 16.
- 21S. Liu, Y. Miao, L. Qiao, Y. Qin, X. Wang, X. Chen, F. Wang, Polym. Chem. 2015, 6, 7580.
- 22S. Liu, Y. Qin, L. Qiao, Y. Miao, X. Wang, F. Wang, Polym. Chem. 2016, 7, 146.
- 23K. Ma, Q. Bai, L. Zhang, B. Liu, RSC Adv. 2016, 6, 48405.
- 24M. Pohl, E. Danieli, M. Leven, W. Leitner, B. Blümich, T. E. Müller, Macromolecules 2016, 49, 8995.
- 25M. R. Kember, A. Buchard, C. K. Williams, Chem. Commun. 2011, 47, 141.
- 26J. Wang, H. Zhang, Y. Miao, L. Qiao, X. Wang, F. Wang, Green Chem. 2016, 18, 524.
- 27J. Wang, H. Zhang, Y. Miao, L. Qiao, X. Wang, F. Wang, Polymer 2016, 100, 219.
- 28G. Kim, M. Ree, H. Kim, I. J. Kim, J. R. Kim, J. I. Lee, Macromol. Res. 2008, 16, 473.
- 29X. C. Ge, Y. Xu, Y. Z. Meng, R. K. Y. Li, Compos. Sci. Technol. 2005, 65, 2219.
- 30Y. Qin, X. Wang, Biotechnol. J. 2010, 5, 1164.
- 31J. Tao, C. Song, M. Cao, D. Hu, L. Liu, N. Liu, S. Wang, Polym. Degrad. Stab. 2009, 94, 575.
- 32M. DeBolt, A. Kiziltas, D. Mielewski, S. Waddington, M. J. Nagridge, J. Appl. Polym. Sci. 2016, 133, app.44086.
- 33E. Orgilés-Calpena, F. Arán-Aís, A. M. Torró-Palau, E. Montiel-Parreño, C. Orgilés-Barceló, Int. J. Adhes. Adhes. 2016, 67, 63.
- 34C.-F. Lee, C.-W. Chen, S.-P. Rwei, F.-S. Chuang, Appl. Sci. 2021, 11, 698.
- 35L. Zhang, M. Huang, R. Yu, J. Huang, X. Dong, R. Zhang, J. J. Zhu, Mater. Chem. A 2014, 2, 11490.
- 36H. S. Lee, Y. K. Wang, W. J. MacKnight, S. L. Hsu, Macromolecules 1988, 21, 270.
- 37S.-M. Kim, H. Jeon, S.-H. Shin, S.-A. Park, J. Jegal, S. Y. Hwang, D. X. Oh, J. Park, Adv. Mater. 2018, 30, 1705145.
- 38J. Leng, X. Lan, Y. Liu, S. Du, Prog. Mater. Sci. 2011, 56, 1077.
- 39N. Ahmed, A. Kausar, B. Muhammad, Polym.-Plast. Technol. Eng. 2015, 54, 1410.
- 40P. Alagi, R. Ghorpade, Y. J. Choi, U. Patil, I. Kim, J. H. Baik, S. C. Hong, ACS Sustainable Chem. Eng. 2017, 5, 3871.
- 41J. G. Hanna, S. Siggia, J. Polym. Sci. 1962, 56, 297.
- 42T. Miyajima, K. Nishiyama, M. Satake, T. Tsuji, Polym. J. 2015, 47, 771.
- 43M. Herrera, G. Matuschek, A. Kettrup, Polym. Degrad. Stab. 2002, 78, 323.
- 44H.-F. Lee, H. H. Yu, Soft Matter 2011, 7, 3801.
- 45O. Phillips, J. M. Schwartz, P. A. Kohl, Polym. Degrad. Stab. 2016, 125, 129.
- 46X. L. Lu, Q. Zhu, Y. Z. Meng, Polym. Degrad. Stab. 2005, 89, 282.
- 47S. Inoue, H. Koinuma, T. Tsuruta, Makromol. Chem. 1969, 130, 210.
- 48Q. Zhu, Y. Meng, S. Tjong, X. Zhao, Y. Chen, Polym. Int. 2002, 51, 1079.
- 49E. Cipriani, M. Zanetti, V. Brunella, L. Costa, P. Bracco, Polym. Degrad. Stab. 2012, 97, 1794.
- 50E. G. Bajsic, V. Rek, J. Appl. Polym. Sci. 2001, 79, 864.
- 51M. A. Subhani, B. Köhler, C. Gürtler, W. Leitner, T. E. Müller, Angew. Chem., Int. Ed. 2016, 55, 5591.
- 52F. Wang, S. Chen, Q. Wu, R. Zhang, P. Sun, Polymer 2019, 163, 154.
- 53M. Ahmad, B. Xu, H. Purnawali, Y. Fu, W. Huang, M. Miraftab, J. Luo, Appl. Sci. 2012, 2, 535.
- 54L. Zhang, Y. Jiang, Z. Xiong, X. Liu, H. Na, R. Zhang, J. J. Zhu, Mater. Chem. A 2013, 1, 3263.