Environment-tolerant conductive and superhydrophobic poly(m-phenylene isophthalamide) fabric prepared via γ-ray activation and reduced graphene oxide/nano SiO2 modification
Taolin Li
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorLin Zou
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorKaichang Cheng
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorXiang Liu
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorHonghui Shi
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorQingqing Yang
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorCorresponding Author
Baobao Chang
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Correspondence
Baobao Chang, Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
Email: [email protected]
Search for more papers by this authorXianzhang Shi
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorJialu Ma
National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
Search for more papers by this authorChuntai Liu
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorChangyu Shen
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorTaolin Li
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorLin Zou
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorKaichang Cheng
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorXiang Liu
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorHonghui Shi
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorQingqing Yang
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorCorresponding Author
Baobao Chang
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Correspondence
Baobao Chang, Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
Email: [email protected]
Search for more papers by this authorXianzhang Shi
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorJialu Ma
National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
Search for more papers by this authorChuntai Liu
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorChangyu Shen
Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
Search for more papers by this authorFunding information: China Postdoctoral Science Foundation, Grant/Award Number: 2019M652571; National Natural Science Foundation of China, Grant/Award Number: 52003249; Natural Science Foundation of Henan, Grant/Award Number: 202300410426; Open Funding Project of National Key Laboratory of Human Factors Engineering, Grant/Award Number: SYFD061910K
Abstract
As one of the high-performance polymer fibers, poly(m-phenylene isophthalamide) (PMIA) is widely used in the area of military and aerospace applications. Whereas, its insulation and hydrophilic nature may lead to electric charge accumulation and dust adherence. This work aims to fabricate a PMIA fabric with integrated conductive and superhydrophobic abilities via a simple method including γ-ray irradiation and dip-coating. Results show that after γ-ray irradiation, the surface roughness of PMIA was enhanced and the content of the oxygen element was increased. In the dip-coating step, the micro-pits and grooves on the surface of PMIA were covered totally by a layer of graphene oxide (GO). After reduction to reduced GO (rGO), a conductive network was built. The conductivity of the fabric was decreased to a minimum value of 0.5 Ω m. Meanwhile, the quite low volume resistivity was retained as 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFTS)/hydrophobic fumed silica nanoparticles (SiO2) was decorated on rGO. Due to the microscale aggregation constituted by nano-SiO2, the fabric presented a superhydrophobic property and self-cleaning ability against simulated Lunar dust. Furthermore, the durability performance proves that an excellent environment-tolerant ability has been endowed to the PMIA fabric by the modification.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
app52004-sup-0001-Supinfo.docxWord 2007 document , 705 KB | Appendix S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1E. G. Chatzi, J. L. Koenig, Polym.-Plast. Technol. Eng. 1987, 26, 229.
- 2K. Marchildon, Macromol. React. Eng. 2011, 5, 22.
- 3L. Wang, J. Yan, R. Zhang, Y. Li, W. Shen, J. Zhang, M. Zhong, S. Guo, ACS Appl. Mater. Interfaces 2021, 13, 9875.
- 4M. Winnacker, B. Rieger, Macromol. Rapid Commun. 2016, 37, 1391.
- 5R. Yadav, M. Tirumali, X. Wang, M. Naebe, B. Kandasubramanian, Defence Technol. 2020, 16, 107.
- 6B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, X. Ding, Adv. Funct. Mater. 2020, 30, 186.
- 7L. Liu, J. Lyu, J. Mo, H. Yan, L. Xu, P. Peng, J. Li, B. Jiang, L. Chu, M. Li, Nano Energy 2020, 69, 398.
- 8J. M. García, F. C. García, F. Serna, J. L. de la Peña, Prog. Polym. Sci. 2010, 35, 623.
- 9M. Afshari, D. J. Sikkema, K. Lee, M. Bogle, Polym. Rev. 2008, 48, 230.
- 10K. Chen, S. Zhang, B. Liu, X. Mao, G. Sun, J. Yu, S. S. Al-Deyab, B. Ding, RSC Adv. 2014, 4, 760.
- 11T. Bashir, M. Skrifvars, N.-K. Persson, Polym. Adv. Technol. 2018, 29, 310.
- 12P. Weiss, M. P. Mohamed, T. Gobert, Y. Chouard, N. Singh, T. Chalal, S. Schmied, M. Schweins, T. Stegmaier, G. T. Gresser, G. Groemer, N. Sejkora, S. Das, R. Rampini, M. Hołyńska, Adv. Mater. Technol. 2020, 5, 28.
- 13S.-Q. Zhao, P.-X. Zheng, H.-L. Cong, A.-L. Wan, Appl. Surf. Sci. 2021, 558, 149931.
- 14Z. Lou, L. Wang, K. Jiang, Z. Wei, G. Shen, Mater. Sci. Eng. R Rep. 2020, 140, 100523.
- 15T. Shimizu, W. Ding, N. Kameta, Chem. Rev. 2020, 120, 2347.
- 16Y. Ding, M. Zeng, L. Fu, Sci. Bull. 2019, 64, 1817.
- 17M. Cao, J. Su, S. Fan, H. Qiu, D. Su, L. Li, Chem. Eng. J. 2021, 406, 126777.
- 18Z. Wang, P. Li, R. Song, W. Qian, H. Zhou, Q. Wang, Y. Wang, X. Zeng, L. Ren, S. Yan, S. Mu, D. He, Sci. Bull. 2020, 65, 1363.
- 19J. Gao, B. Li, X. Huang, L. Wang, L. Lin, H. Wang, H. Xue, Chem. Eng. J. 2019, 373, 298.
- 20D. Ahn, H.-J. Choi, S. Y. Yeo, Polymer 2020, 12, 179.
- 21 J. Pionteck, G. Wypych Eds., Types of antistatic agents. in Handbook of Antistatics, 2nd ed., ChemTec Publishing, Toronto, Ontario, Canada 2016, p. 17.
- 22Y. Zhou, W. Li, L. Li, Z. Sun, L. Jiang, J. Ma, S. Chen, X. Ning, F.-L. Zhou, J. Mater. Sci. 2021, 56, 6499.
- 23G. Liu, Z. Wang, B. Bao, Z. Ouyang, C. Du, F. Liu, W. Wang, D. Yu, J. Colloid Interface Sci. 2021, 588, 50.
- 24X.-X. Wang, G.-F. Yu, J. Zhang, M. Yu, S. Ramakrishna, Y.-Z. Long, Prog. Mater. Sci. 2021, 115, 100704.
- 25W. Wang, R. Li, M. Tian, L. Liu, H. Zou, X. Zhao, L. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 2062.
- 26L. Wang, M. Zhang, B. Yang, X. Ding, J. Tan, S. Song, J. Nie, ACS Appl. Mater. Interfaces 2021, 13, 5486.
- 27A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, E. T. Sayed, Renew. Sustain. Ener. Rev. 2021, 135, 110026.
- 28M. Zhang, J. Cui, T. Lu, G. Tang, S. Wu, W. Ma, C. Huang, Chem. Eng. J. 2021, 404, 126347.
- 29Y. Yao, T. Lv, N. Li, Z. Chen, C. Zhang, T. Chen, Sci. Bull. 2020, 65, 486.
- 30B. Li, J. Luo, X. Huang, L. Lin, L. Wang, M. Hu, L. Tang, H. Xue, J. Gao, Y.-W. Mai, Composites, Part B 2020, 181, 107580.
- 31A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
- 32C. Backes, A. M. Abdelkader, C. Alonso, A. Andrieux-Ledier, R. Arenal, J. Azpeitia, N. Balakrishnan, L. Banszerus, J. Barjon, R. Bartali, S. Bellani, C. Berger, R. Berger, M. M. B. Ortega, C. Bernard, P. H. Beton, A. Beyer, A. Bianco, P. Bøggild, F. Bonaccorso, G. B. Barin, C. Botas, R. A. Bueno, D. Carriazo, A. Castellanos-Gomez, M. Christian, A. Ciesielski, T. Ciuk, M. T. Cole, J. Coleman, C. Coletti, L. Crema, H. Cun, D. Dasler, D. De Fazio, N. Díez, S. Drieschner, G. S. Duesberg, R. Fasel, X. Feng, A. Fina, S. Forti, C. Galiotis, G. Garberoglio, J. M. García, J. A. Garrido, M. Gibertini, A. Gölzhäuser, J. Gómez, T. Greber, F. Hauke, A. Hemmi, I. Hernandez-Rodriguez, A. Hirsch, S. A. Hodge, Y. Huttel, P. U. Jepsen, I. Jimenez, U. Kaiser, T. Kaplas, H. Kim, A. Kis, K. Papagelis, K. Kostarelos, A. Krajewska, K. Lee, C. Li, H. Lipsanen, A. Liscio, M. R. Lohe, A. Loiseau, L. Lombardi, M. Francisca López, O. Martin, C. Martín, L. Martínez, J. A. Martin-Gago, J. Ignacio Martínez, N. Marzari, Á. Mayoral, J. McManus, M. Melucci, J. Méndez, C. Merino, P. Merino, A. P. Meyer, E. Miniussi, V. Miseikis, N. Mishra, V. Morandi, C. Munuera, R. Muñoz, H. Nolan, L. Ortolani, A. K. Ott, I. Palacio, V. Palermo, J. Parthenios, I. Pasternak, A. Patane, M. Prato, H. Prevost, V. Prudkovskiy, N. Pugno, T. Rojo, A. Rossi, P. Ruffieux, P. Samorì, L. Schué, E. Setijadi, T. Seyller, G. Speranza, C. Stampfer, I. Stenger, W. Strupinski, Y. Svirko, S. Taioli, K. B. K. Teo, M. Testi, F. Tomarchio, M. Tortello, E. Treossi, A. Turchanin, E. Vazquez, E. Villaro, P. R. Whelan, Z. Xia, R. Yakimova, S. Yang, G. R. Yazdi, C. Yim, D. Yoon, X. Zhang, X. Zhuang, L. Colombo, A. C. Ferrari, M. Garcia-Hernandez, 2D Materials 2020, 7, 022001.
- 33V. Agarwal, P. B. Zetterlund, Chem. Eng. J. 2021, 405, 127018.
- 34S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
- 35D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
- 36X.-M. Huang, L.-Z. Liu, S. Zhou, J.-J. Zhao, Front. Phys. 2020, 15, 3301.
- 37J. Ou, F. Wang, W. Li, M. Yan, A. Amirfazli, Prog. Org. Coat. 2020, 146, 105700.
- 38A. S. Anjum, M. Ali, K. C. Sun, R. Riaz, S. H. Jeong, J. Colloid Interface Sci. 2020, 563, 62.
- 39Y. Lu, S. Sathasivam, J. Song, C. R. Crick, C. J. Carmalt, I. P. Parkin, Science 2015, 347, 1132.
- 40Y. Fang, G. Sun, Y. Bi, H. Zhi, Sci. Bull. 2015, 60, 256.
- 41T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langmuir 1999, 15, 4321.
- 42P. Wang, B. Sun, Y. Liang, H. Han, X. Fan, W. Wang, Z. Yang, J. Mater. Chem. A 2018, 6, 404.
- 43B. Zhang, L. Jia, M. Tian, N. Ning, L. Zhang, W. Wang, Eur. Polym. J. 2021, 147, 352.
- 44P. M. Gore, B. Kandasubramanian, Ind. Eng. Chem. Res. 2018, 57, 537.
- 45B. Zhang, X. Shao, T. Liang, W. Wang, M. Tian, N. Ning, L. Zhang, J. Appl. Polym. Sci. 2021, 138, 1011.
- 46C. Jia, R. Zhang, C. Yuan, Z. Ma, Y. Du, L. Liu, Y. Huang, Polym. Compos. 2020, 41, 2046.
- 47L. Zhang, H. Kong, M. Qiao, X. Ding, M. Yu, Appl. Surf. Sci. 2020, 521, 6430.
- 48D. J. Carlsson, L. H. Gan, D. M. Wiles, J. Polym. Sci., Polym. Chem. Ed. 1978, 16, 2353.
- 49A. M. Hindeleh, R. Hosemann, G. Hinrichsen, H. Springer, J. Polym. Sci. B Polym. Phys. 1990, 28, 267.
- 50D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
- 51G. Santamaría-Juárez, E. Gómez-Barojas, E. Quiroga-González, E. Sánchez-Mora, M. Quintana-Ruiz, J. D. Santamaría-Juárez, Mater. Res. Exp. 2020, 6, 125631.
- 52M. He, H. Shi, B. Chang, G. Zheng, W. Cao, C. Liu, C. Shen, Macromol. Chem. Phys. 2021, 222, 357.
- 53Y. Zhang, Y. Huang, L. Liu, L. Wu, J. Appl. Polym. Sci. 2007, 106, 2251.
- 54L. Xing, L. Liu, F. Xie, Y. Huang, Appl. Surf. Sci. 2016, 375, 65.
- 55S. M. Seyed Shahabadi, H. Rabiee, S. M. Seyedi, A. Mokhtare, J. A. Brant, J. Membr. Sci. 2017, 537, 140.
- 56H. Tang, X. Li, S. Zhang, S. Wang, J. Liu, S. Li, Y. Li, Y. Wu, Adv. Space Res. 2017, 59, 1156.