Synthesis and characterization of 1,3-butadiene-containing hyperbranched conjugated polymers as a selective chemosensors for Fe3+ ions
Qi Chen
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorChuxin Luo
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorQi Ma
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorXueyang Yan
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorCorresponding Author
Xuediao Cai
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Correspondence
Xuediao Cai, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
Email: [email protected]
Search for more papers by this authorQi Chen
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorChuxin Luo
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorQi Ma
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorXueyang Yan
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Search for more papers by this authorCorresponding Author
Xuediao Cai
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
Correspondence
Xuediao Cai, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
Email: [email protected]
Search for more papers by this authorFunding information: National Key Research Program of China, Grant/Award Number: 2016YFA0202403
Abstract
Hyperbranched conjugated polymers (P1, P2 and P3) containing different aryl groups appended with carboxylic ester groups were synthesized by metal-free catalyzed polymerization via A2 + B3 type monomers. These as-prepared polymers can be dissolved well in common organic solvents and have good thermal stability. These polymers were investigated as fluorescence chemosensor for the detection of biologically important metal ion Fe3+. The corresponding Stern-Volmer constants (Ksv) of P1, P2 and P3 were 3.99 × 104 M−1, 5.15 × 104 M−1 and 3.99 × 104 M−1, respectively. The detection limits of 1.203 × 10−7 M for P1, 8.487 × 10−7 M for P2 and 7.158 × 10−6 M for P3 were achieved. In addition, the water-soluble hyperbranched conjugated polymers were obtained by hydrolysis of neutral polymer P1, P2 and P3. The ability of water-soluble polymers to detect Fe3+ ion in an aqueous solution was investigated in this work. The results demonstrated that the different aryl moieties in backbone of hyperbranched polymers mainly affected their energy band instead of their selective detection of Fe3+ ions. All the polymers were highly sensitive and selective toward Fe3+ ions in organic solvents and aqueous solution, indicating that these polymers could be used as fluorescence chemosensor for Fe3+ ions in real time.
Open Research
DATA AVAILABILITY STATEMENT
No. Research data are not shared.
Supporting Information
Filename | Description |
---|---|
app51966-sup-0001-supinfo.docxWord 2007 document , 6.4 MB | Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1K. P. Carter, A. M. Young, A. E. Palmer, Chem. Rev. 2014, 114, 4564.
- 2L.-D. Yang, F. Li, Z. Luo, Z.-M. Luo, B.-Q. Bao, Y.-L. Hu, L.-X. Weng, Y.-X. Cheng, L.-H. Wang, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1686.
- 3P. Aisen, M. Wessling-Resnick, E. A. Leibold, Curr. Opin. Chem. Biol. 1999, 3, 200.
- 4N. Abbaspour, R. Hurrell, R. J. Kelishadi, Res. Med. Sci. 2014, 19, 164.
- 5L. M. Hyman, K. J. Franz, Coord. Chem. Rev. 2012, 256, 2333.
- 6J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Bueschel, A. I. Tolmachev, J. Daub, K. Rurack, J. Am. Chem. Soc. 2005, 127, 13522.
- 7H. Harigae, Int. J. Hematol. 2018, 107, 5.
- 8R. S. Eisenstein, Annu. Rev. Nutr. 2000, 20, 627.
- 9H. Weizman, O. Ardon, B. Mester, J. Libman, O. Dwir, Y. Hadar, Y. Chen, A. Shanzer, J. Am. Chem. Soc. 1996, 118, 12368.
- 10D. S. Kalinowski, D. R. Richardson, Chem. Res. Toxicol. 2007, 20, 715.
- 11A. Luo, H. Wang, Y. Wang, Q. Huang, Q. Zhang, Spectrochim. Acta, Part A 2016, 168, 37.
- 12J. Hofmann, V. Watson, B. Scharaw, Environ. Earth Sci. 2015, 73, 629.
- 13J. Y. Cabon, P. Giamarchi, A. Le-Bihan, Anal. Chim. Acta 2010, 664, 114.
- 14L. Norocel, G. Gutt, Aust. J. Grape Wine Res. 2019, 25, 161.
- 15H. Berber, G. Alpdogan, Anal. Sci. 2017, 33, 1427.
- 16L.-S. Huang, K.-C. Lin, Spectrochim. Acta, Part B 2001, 56, 123.
- 17A. Choodum, W. Sriprom, W. Wongniramaikul, Spectrochim. Acta, Part A 2019, 208, 40.
- 18T. V. S. Adinarayana, A. Mishra, I. Singhal, D. V. R. Koti Reddy, Nanoscale Adv. 2020, 2, 4125.
- 19D. M. Arvapalli, A. T. Sheardy, K. C. Alapati, J. Wei, Talanta 2020, 209, 120538.
- 20F. Ooshall, R. Golbedaghi, S. Jamehbozorgi, Appl. Organomet. Chem. 2020, 34, e5430.
- 21L.-L. Long, L.-P. Zhou, L. Wang, S. Meng, A. Gong, C. Zhang, Anal. Chim. Acta 2014, 812, 145.
- 22B. Mariammal, A. Shylaja, S.-V. Kumar, S.-R. Rubina, R.-R. Kumar, J. Heterocycl. Chem. 2020, 57, 3882.
- 23T. Noipa, K. Ngamdee, T. Tuntulani, W. Ngeontae, Spectrochim. Acta, Part A 2014, 118, 17.
- 24T. H. Le, H. J. Lee, H. J. Kim, S. J. Park, Sensors 2020, 20, 3470.
- 25F. Song, C. Yang, H. Liu, Z. Gao, J. Zhu, X. Bao, C. Kan, Analyst 2019, 144, 3094.
- 26G. Zhou, G. Qian, L. Ma, Y.-X. Cheng, Z. Xie, L. X. Wang, X.-B. Jing, F. Wang, Macromolecules 2005, 38, 5416.
- 27J. P. Sumner, R. Kopelman, Analyst 2005, 130, 528.
- 28Y. Ma, W. Luo, P. J. Quinn, Z. D. Liu, R. Hider, J. Med. Chem. 2004, 47, 6349.
- 29M. Wang, J. Wang, W. Xue, A. Wu, Dyes Pigm. 2013, 97, 475.
- 30S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu, K. Dhara, P. Chattopadhyay, Analyst 2012, 137, 3335.
- 31J.-M. Liu, Q.-Y. Zheng, J.-L. Yang, C.-F. Chen, Z.-T. Huang, Tetrahedron Lett. 2002, 43, 9209.
- 32Q. Wang, C. Tan, Anal. Chim. Acta 2011, 708, 111.
- 33B. Rathinam, C. C. Chien, B.-C. Chen, J.-H. Liu, Tetrahedron 2013, 69, 235.
- 34Y. Ni, C. Huang, S. Kokot, Anal. Chim. Acta 2007, 599, 209.
- 35T. Madrakian, R. Siri, Acta Chim. Slov. 2011, 58, 288.
- 36D. Hu, J. Yu, P. F. Barbara, J. Am. Chem. Soc. 1999, 121, 6936.
- 37Z. Yu, P. F. Barbara, J. Phys. Chem. B 2004, 108, 11321.
- 38A. Moscatelli, K. Livingston, W. Y. So, S. J. Lee, U. Scherf, J. Wildeman, L.-A. Peteanu, J. Phys. Chem. B 2010, 114, 14430.
- 39Y. Lei, H. Li, X. Huang, M. Liu, W. Gao, J. Ding, D. Lin, H. Y. Wu, Tetrahedron 2015, 71, 3453.
- 40L. Zhang, Z. Cheng, H. Xu, F. Liang, L. Pang, Bull. Mater. Sci. 2020, 43, 69.
- 41X. Wu, H. Li, Y. Xu, H. Tong, L. Wang, Polym. Chem. 2015, 6, 2305.
- 42J. Sun, J. Yang, C. Zhang, H. Wang, J. Li, S. Su, H. Xu, T.-M. Zhang, Y. Wu, W.-Y. Wong, B.-S. Xue, New J. Chem. 2015, 39, 5180.
- 43J. Schmidt, M. Werner, A. Thomas, Macromolecules 2009, 42, 4426.
- 44V. Senkovskyy, I. Senkovska, A. Kiriy, ACS Macro Lett. 2012, 1, 494.
- 45R. Sun, X. Huo, H. Lu, S.-Y. Feng, D.-X. Wang, H.-Z. Liu, Sens. Actuators, B 2018, 265, 476.
- 46C. P. Sen, V. D. Goud, R. G. Shrestha, L. K. Shrestha, K. Ariga, S. Valiyaveettil, Polym. Chem. 2016, 7, 4213.
- 47J. Qu, M. Shiotsuki, N. Kobayashi, F. Sanda, T. Masuda, Polymer 2007, 48, 6481.
- 48C.-X. Luo, Y.-T. Liu, Q. Zhang, X.-D. Cai, RSC Adv. 2017, 7, 12269.
- 49X.-D. Cai, Y.-T. Liu, T. Lu, R. Yang, C.-X. Luo, Q. Zhang, Y.-H. Chai, Macromol. Rapid Commun. 2005, 2016, 37.
- 50D.-L. Ma, Q.-Y. Qi, J. Lu, M.-H. Xiang, C. Jia, B.-Y. Lu, G.-F. Jiang, X. Zhao, Chem. Commun. 2020, 56, 15418.
- 51L. Chiummiento, M. Funicello, P. Lupattelli, T. Framutola, Org. Lett. 2012, 14, 3928.
- 52S. Akine, H. Nagumoa, T. Nabeshima, Dalton Trans. 2013, 42, 15974.
- 53Y. Liu, X.-Y. Du, Z. Xiao, J.-M. Cao, S.-T. Tan, Q.-Q. Zuo, L.-M. Ding, Synth. Met. 2012, 162, 1665.
- 54X.-S. Ding, H. S. Yoshihito, X. Feng, S. S. Oraphan, J.-D. Guo, S. Akinori, S. Shu, J. Am. Chem. Soc. 2011, 133, 14510.
- 55W. Zhang, J.-M. Cao, Y. Liu, Z. Xiao, W.-G. Zhu, Q.-Q. Zuo, L.-M. Ding, Macromol. Rapid Commun. 2012, 33, 1574.
- 56B. Bao, W. Yu, H. Li, X. Zhan, L. Wang, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3431.
- 57H. T. Nguyen, T. Nguyen, T. T. Nguyen, A. T. Luu, T. V. Le, J. Polym. Res. 2014, 21, 2.
- 58H. Ejima, H. Matsuno, T. Serizawa, Langmuir 2010, 26, 1727.
- 59M. Comi, D. Patra, R. Yang, Z.-H. Chen, A. Harbuzaru, Y. Wubulikasimu, S. Banerjee, R. Ponce Ortiz, Y. Liu, M. Al-Hashimi, J. Mater. Chem. C 2021, 9, 5113.
- 60J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New York 1999.
10.1007/978-1-4757-3061-6 Google Scholar