Improvement of polyimide/polysulfone composites filled with conductive carbon black as positive temperature coefficient materials
Sunan Tiptipakorn
Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140 Thailand
Search for more papers by this authorNoppawat Kuengputpong
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorManunya Okhawilai
Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorCorresponding Author
Sarawut Rimdusit
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Correspondence to: S. Rimdusit (E-mail: [email protected])Search for more papers by this authorSunan Tiptipakorn
Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140 Thailand
Search for more papers by this authorNoppawat Kuengputpong
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorManunya Okhawilai
Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorCorresponding Author
Sarawut Rimdusit
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Correspondence to: S. Rimdusit (E-mail: [email protected])Search for more papers by this authorABSTRACT
In this study, polyimide (PI)/polysulfone (PSF) blends filled with carbon black (CB) were developed for the use as positive temperature coefficient (PTC) materials in order to achieve the volume resistivity as lower than 104 Ω.cm at room temperature. The weight ratios of PI/PSF were various from 100/0 to 10/90 with CB varied from 0 to 20 wt%. The use of conductive filler was reduced when PSF was blended with PI; the blends clearly possessed a percolation threshold decreased by 90%. The electrical conductivity of the CB-filled blends was higher than those of CB-filled pure PI. The transition temperature for PTC material was reported in the range of 180 to 210 °C. The preferential location of CB filler in PI domains could be observed using the optical microscope. In addition, the composites met the standards for the obtained mechanical and thermal properties, exhibiting the potential use as PTC materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48482.
REFERENCES
- 1Ren, D.; Zheng, S.; Huang, S.; Liu, Z.; Yang, M. J. Appl. Polym. Sci. 2013, 129, 3382.
- 2Allak, A. H. M.; Brinkman, A. W.; Woods, J. J. Mater. Sci. 1993, 28, 117.
- 3Chen, R.; Bin, Y.; Zhang, R.; Dong, E. Polymer. 2012, 53, 5197.
- 4Bai, B.-C.; Kang, S.-C.; Im, J.-S.; Lee, S.-H.; Lee, Y.-S. Mater. Res. Bull. 2011, 46, 1391.
- 5Li, G.; Hu, C.; Zhai, W.; Zhao, S.; Zheng, G.; Dai, K.; Liu, C.; Shen, G. Mater. Lett. 2016, 182, 314.
- 6Kim, K.-R.; Park, E.-S. Plast. Rubber. Compos. 2016, 45, 118.
- 7He, L.; Tjong, S.-C. Nano. Res. Lett. 2014, 9, 375.
- 8Pang, H.; Zhang, Y.-C.; Chen, T.; Zeng, B.-Q.; Li, Z.-M. Appl. Phys. Lett. 2010, 96, 251907.
- 9Kono, A.; Shimizu, K.; Nakano, H.; Goto, Y.; Kobayashi, Y.; Ougizawa, T.; Horibe, H. Polymer. 2012, 53, 1760.
- 10Siddaramaiah, Q. L.; Kim, N. H.; Yoo, G. H.; Lee, J. H. Compos.: Part B. 2009, 40, 218.
- 11Kim, J.; Kang, P.-H.; Nho, Y.-C. J. Appl. Polym. Sci. 2004, 92, 394.
- 12Liang, J.-Z.; Yang, Q.-Q. Adv. Polym. Technol. 2018, 37, 2238.
- 13Gkourmpis, T.; Svanberg, C.; Kaliappan, S. K.; Schaffer, W.; Obadal, M.; Kandioller, G.; Tranchida, D. Eur. Polym. J. 2013, 49, 1975.
- 14Xu, Z.; Zhao, C.; Gu, A.; Fang, Z.; Tong, L. J. Appl. Polym. Sci. 2007, 106, 2008.
- 15Oxfall, H.; Ariu, G.; Gkourmpis, T.; Rychwalski, R. W.; Rigdahl, M. Express Polym. Lett. 2015, 9, 66.
- 16Gong, T.; Peng, S. P.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Compos. Part B. 2016, 99, 348.
- 17Feng, J.; Chan, C.-M. Polymer. 2000, 41, 7229.
- 18Cakir, M.; Akin, E. J. Appl. Polym. Sci. 2019, 136, 47399.
- 19Xu, W.; Ding, Y.; Huang, R.; Zhu, Z.; Fong, H.; Hou, H. J. Appl. Polym. Sci. 2018, 135, 46849.
- 20Saxena, P.; Gaur, M. S. J. Appl. Polym. Sci. 2010, 118, 3715.
- 21Petreus, O.; Lisa, G.; Avram, E.; Rosu, E. J. Appl. Polym. Sci. 2011, 120, 3233.
- 22Hamid, M. A. A.; Chung, Y. T.; Rohani, R.; Junaidi, M. U. M. Sep. Purif. Technol. 2019, 209, 598.
- 23Kapantaidakis, G. C.; Dabou, X. S.; Sakellaropoulos, G. P. J. Membr. Sci. 1996, 110, 239.
- 24Ammar, A.; Elzatahry, A.; Al-Maadeed, M.; Alenizi, A. M.; Huq, A. F.; Karim, A. Appl. Clay Sci. 2017, 137, 123.
- 25Mallette, J. G.; Quej, L. M.; Marquez, A.; Manero, O. J. Appl. Polym. Sci. 2001, 81, 562.
- 26Wu, G.; Li, B.; Jiang, J. Polymer. 2010, 51, 2077.
- 27Gardner II, S.H. Ph.D. Thesis, An investigation of the structure-property relationships for high performance thermoplastic matrix, carbon fiber composites with a tailored polyimide interphase, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, August 1998.
- 28Nah, C.; Han, S. H.; Lee, J. H. Compos. Part B. 2004, 35, 125.
- 29Yang, C. P.; Su, Y. Y. Polymer. 2005, 46, 5797.
- 30Ghosh, M. Polyimides: Fundamentals and Applications; CRC Press: New York, 1996.
- 31Kapantaidakis, G.; Kaldis, S. P.; Sakellaropoulos, G. P.; Chira, E.; Loppinet, B.; Floudas, G. J. Polym. Sci. B. 1999, 37, 2788.
- 32Liang, K.; Grebowicz, J.; Valles, E.; Karasz, F. E.; MacKnight, W. J. J. Polym. Sci. Part B. 1992, 30, 465.
- 33Levon, K.; Margolina, A.; Patashinsky, A. Z. Macromolecules. 1993, 26(15), 4061.
- 34Gao, C.; Zhang, S.; Kin, Y.; Li, F.; Guan, S.; Jiang, Z. Compos. Part B. 2015, 79, 124.
- 35Bera, T.; Acharya, S. K.; Mishra, P. Int. J. Eng. Sci. Tech. 2018, 10, 12.
10.4314/ijest.v10i4.2 Google Scholar
- 36Sircar, A. K. Rubber Chem. Technol. 1981, 54, 820.
- 37Zaikin, A. E.; Mindubaev, R.; Arkhireev, V. P. Colloid J. 1999, 61, 459.
- 38Cui, L.; Zhang, Y.; Zhang, Y.; Zhang, X.; Zhou, W. Eur. Polym. J. 2007, 43, 5097.
- 39Dey, P.; Naskar, K.; Dash, B.; Nair, S.; Unnikrishnan, G.; Nando, G. B. RSC Adv. 2015, 5, 31886.
- 40Owens, D.; Wendt, R. J. Appl. Polym. Sci. 1969, 13, 131741.
- 41Chen, Y.; Wang, F. Q.; Yang, H.; Meng, Q. R. Polym. Test. 2011, 30, 442.
- 42Di, W. H.; Zhang, G. J. Mater. Sci. 2004, 39, 695.
- 43 Handbook of Polymers. Vol. 258; ChemTec Publishing: Toronto, Canada, 2012.
- 44Foulger, S. H. J. Polymer. Science. Part B. 1899, 1999, 37.
- 45So, H. H.; Cho, J. W.; Sahoo, N. G. Eur. Polym. J. 2007, 43, 3750.
- 46Nayak, L.; Rahaman, M.; Khastgir, D.; Chaki, T. K. Polym. Bull. 2011, 67, 1029.
- 47Al-Saleh, M. H.; Sundararaj, U. Compos. Part A. 2008, 39, 284.
- 48Al-Saleh, M. H.; Sundararaj, U. Eur. Polym. J. 2008, 44, 1931.
- 49Kwon, J.; Kim, J.; Lee, J.; Han, P.; Park, D.; Han, H. Polym. Compos. 2014, 35, 2214.
- 50Zhang, X.; Zheng, S.; Zou, H.; Zheng, X.; Liu, Z.; Yang, W.; Yang, M. Compos. Part A. 2017, 94, 21.
- 51Taherian, R.; Ghorbani, M. M. ECS J. Solid State Sci. Tech. 2017, 6, 3019.
- 52Hwang, J.; Muth, J.; Ghosh, T. J. Appl. Polym. Sci. 2007, 104, 2410.
- 53Deilamy Moezzi, M.; Karrabi, M.; Jahani, Y. Int. J. Plas. Technol. 2019, 23, 46.
- 54Krieg, A. S.; King, J. A.; Jaszczak, D. C.; Miskoglu, I.; Mills, O. P.; Odegard, G. M. J. Compos. Mater. 2018, 52, 3909.
- 55Mercx, F.P.; Horst, S.T, US Patent no. 8496854, (2013).
- 56Ghanbari, A.; Heuzey, M.; Carreau, P.; Ton-That, M. In Polymer Morphology: Principles, Characterization, and Processing; Q Guo, Ed; John Wiley & Sons, Inc: Hoboken, New Jersey, 2016; Chapter 21, p 397.
10.1002/9781118892756.ch21 Google Scholar
- 57Wang, H.; Zhu, D.; Zhou, W.; Luo, F. Polym. Adv. Technol. 2014, 25, 1616.