Immobilization of polyvinyl alcohol-siloxane on the oxygen plasma-modified polyurethane-carbon nanotube composite matrix
Amir Aidun
National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
Search for more papers by this authorCorresponding Author
Ali Zamanian
Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
Correspondence to: Ali Zamanian (E-mail: [email protected]), Farnaz Ghorbani (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Farnaz Ghorbani
Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
Correspondence to: Ali Zamanian (E-mail: [email protected]), Farnaz Ghorbani (E-mail: [email protected])Search for more papers by this authorAmir Aidun
National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
Search for more papers by this authorCorresponding Author
Ali Zamanian
Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
Correspondence to: Ali Zamanian (E-mail: [email protected]), Farnaz Ghorbani (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Farnaz Ghorbani
Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
Correspondence to: Ali Zamanian (E-mail: [email protected]), Farnaz Ghorbani (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polyurethane-based scaffolds have been considered as a promising strategy for tissue regeneration. Herein, the polyurethane and carbon nanotubes electrospun scaffolds were modified by polyvinyl alcohol-3-glycidoxypropyl-trimethoxysilane after oxygen plasma treatment to improve physicochemical and in vitro properties for efficient bone reconstruction. Finally, the morphology of scaffolds, chemical characterization, surface roughness, bioactivity, hydrophilicity, cell attachment, cell viability, and alkaline phosphatase activity were investigated. According to microscopy results, bead free and smooth fibers were obtained using electrospinning while the degree of uniformity was reduced after the surface modification process. However, the modification process induced higher hydrophilicity and bioactivity to prepared scaffolds. In addition, the attachment and viability of the cells were improved as a function of surface modification. The expression of alkaline phosphatase especially in modified fibers confirmed the initial potential of scaffolds for bone tissue engineering applications and further studies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48477.
CONFLICT OF INTEREST
The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.
REFERENCES
- 1Hasnain, M. S.; Ahmad, S. A.; Chaudhary, N.; Hoda, M. N.; Nayak, A. K. Applications of Nanocomposite Materials in Orthopedics; Elsevier: Cambridge, 2019. p. 1.
10.1016/B978-0-12-813740-6.00001-6 Google Scholar
- 2Ahani, E.; Montazer, M.; Toliyat, T.; Mahmoudi Rad, M. J. Bioact. Compat. Polym. 2017, 32, 242.
- 3Ahani, E.; Montazer, M.; Toliyat, T.; Mahmoudi Rad, M.; Harifi, T. J. Microencapsul. 2017, 34, 121.
- 4Haghjoo, R.; Karkhaneh, A. J. Tissues Mater. 2019, 2, 14.
- 5Joseph, J.; Patel, R. M.; Wenham, A.; Smith, J. R. 2018, 96, 121.
- 6Raghu, A. V.; Lee, Y. R.; Jeong, H. M.; Shin, C. M. Macromol. Chem. Phys. 2008, 209, 2487.
- 7Gogolewski, S.; Gorna, K. J. Biomed. Mater. Res. Part A. 2007, 80A, 94.
- 8Unnithan, A. R.; Barakat, N. A. M.; Tirupathi Pichiah, P. B.; Gnanasekaran, G.; Nirmala, R.; Cha, Y. S.; Jung, C. H.; El-Newehy, M.; Kim, H. Y. Carbohydr. Polym. 2012, 90, 1786.
- 9Jaganathan, S. K.; Mani, M. P.; Palaniappan, S. K.; Rathanasamy, R. J. Polym. Res. 2018, 25, 146.
- 10Ghorbani, F.; Zamanian, A. J. Polym. Eng. 2019, 2019, 1.
- 11Yeganegi, M.; Kandel, R. A.; Santerre, J. P. Acta Biomater. 2010, 6, 3847.
- 12Shin, S. R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y. S.; Akbari, M.; Jung, S. M.; Kim, D.; Comotto, M.; Annabi, N.; Al-Hazmi, F. E.; Dokmeci, M. R.; Khademhosseini, A. Adv. Mater. 2016, 28, 3280.
- 13Wiemann, K.; Kaminsky, W.; Gojny, F. H.; Schulte, K. Macromol. Chem. Phys. 2005, 206, 1472.
- 14Jing, Z.; Wu, Y.; Su, W.; Tian, M.; Jiang, W.; Cao, L.; Zhao, L.; Zhao, Z. Ann. Biomed. Eng. 2017, 45, 2075.
- 15Yan, X.; Yang, W.; Shao, Z.; Yang, S.; Liu, X. Int. J. Nanomedicine. 2016, 11, 5473.
- 16Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Colloids Surf. B Biointerfaces. 2012, 93, 226.
- 17Jell, G.; Verdejo, R.; Safinia, L.; Shaffer, M. S. P.; Stevens, M. M.; Bismarck, A. J. Mater. Chem. 2008, 18, 1865.
- 18Sen, R.; Zhao, B.; Perea, D.; Itkis, M. E.; Hu, H.; Love, J.; Bekyarova, E.; Haddon, R. C. Nano Lett. 2004, 4, 459.
- 19Yang, Z.; Peng, H.; Wang, W.; Liu, T. J. Appl. Polym. Sci. 2010, 116, 2658.
- 20Irineu, J. A. F.; Marsi, T. C. O.; Santos, T. G.; Corat, E. J.; Marciano, F. R.; Lobo, A. O. Mater. Lett. 2012, 79, 166.
- 21Cheng, Q.; Rutledge, K.; Jabbarzadeh, E. Ann. Biomed. Eng. 2013, 41, 904.
- 22Mendes, R. M.; Silva, G. A. B.; Caliari, M. V.; Silva, E. E.; Ladeira, L. O.; Ferreira, A. J. Life Sci. 2010, 87, 215.
- 23Stevens, M. M.; George, J. H. Science. 2005, 310, 1135.
- 24Geckeler, K. E.; Wacker, R.; Aicher, W. K. Naturwissenschaften. 2000, 87, 351.
- 25Ghorbani, F.; Zamanian, A. E-Polymers. 2018, 18, 275.
- 26Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D. L.; Boyan, B. D. J. Biomed. Mater. Res. Part A. 2005, 74A, 49.
- 27Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Mater. Sci. Eng. C. 2017, 78, 1246.
- 28Pappa, A. M.; Karagkiozaki, V.; Krol, S.; Kassavetis, S.; Konstantinou, D.; Pitsalidis, C.; Tzounis, L.; Pliatsikas, N.; Logothetidis, S. Beilstein J. Nanotechnol. 2015, 6, 254.
- 29Qiu, X.; Lee, B. L. P.; Ning, X.; Murthy, N.; Dong, N.; Li, S. Acta Biomater. 2017, 51, 138.
- 30Chou, W. C.; Wang, R. C. C.; Liu, C.; Yang, C. Y.; Lee, T. M. Materials (Basel). 2017, 10(11), 1223.
- 31Lee, C.-M.; Yang, S.-W.; Jung, S.-C.; Kim, B.-H. J. Nanosci. Nanotechnol. 2017, 17, 2747.
- 32Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Mater. Sci. Eng. C. 2017, 81, 349.
- 33Torres-Lagares, D.; Castellanos-Cosano, L.; Serrera-Figallo, M. A.; López-Santos, C.; Barranco, A.; Rodríguez-González-Elipe, A.; Gutierrez-Perez, J. L. Materials (Basel). 2018, 11(5), 752.
- 34Nandakumar, A.; Tahmasebi Birgani, Z.; Santos, D.; Mentink, A.; Auffermann, N.; Van Der Werf, K.; Bennink, M.; Moroni, L.; Van Blitterswijk, C.; Habibovic, P. Biofabrication. 2013, 5, 015006.
- 35Robinson, D. E.; Al-Bataineh, S. A.; Farrugia, B. L.; Michelmore, A.; Cowin, A. J.; Dargaville, T. R.; Short, R. D.; Smith, L. E.; Whittle, J. D. Plasma Process. Polym. 2016, 13, 678.
- 36Qi, J.; Zhang, H.; Wang, Y.; Mani, M. P.; Kumar, S. J. Int. J. Nanomedicine. 2018, 2018, 2777.
- 37Abdal-Hay, A.; Hussein, K. H.; Casettari, L.; Khalil, K. A.; Hamdy, A. S. Mater. Sci. Eng. C. 2016, 60, 143.
- 38Ghorbani, F.; Zamanian, A.; Behnamghader, A.; Daliri Joupari, M. J. Appl. Polym. Sci. 2018, 135, 46739.
- 39Aidun, A.; Zamanian, A.; Ghorbani, F. Biotechnol. Appl. Biochem. 2019, 66, 43.
- 40Ghorbani, F.; Zamanian, A.; Behnamghader, A.; Joupari, M. D. E-Polymers. 2018, 18, 247.
- 41Ghorbani, F.; Zamanian, A.; Aidun, A. J. Appl. Polym. Sci. 2019, 136, 47656.
- 42Gomez, C.; Demirci, M. F.; Shokoufandeh, A.; Sun, W.; Regli, W. Presented at the IEEE 30th Annual Northeast Bioengineering Conference, 2004. Proceedings of the IEEE; pp 132.
- 43Cheng, Q.; Lee, B. L.-P.; Komvopoulos, K.; Yan, Z.; Li, S. Tissue Eng. Part A. 2013, 19, 1188.
- 44Valero, M. F.; Pulido, J. E.; Hernández, J. C.; Posada, J. A.; Ramírez, A. J. Elastomers Plast. 2009, 41, 223.
- 45Sun, X.; Xu, Y.; Wang, J. J. Solid State Electrochem. 2012, 16, 1781.
- 46Rajesh, R.; Ravichandran, Y. D. Int. J. Nanomedicine. 2015, 10(Suppl 1), 7.
- 47Gao, C.; Gao, Q.; Li, Y.; Rahaman, M. N.; Teramoto, A.; Abe, K. J. Biomed. Mater. Res. - Part A. 2012, 100 A, 1324.
- 48Šapić, I. M.; Bistričić, L.; Volovšek, V.; Dananić, V.; Furić, K. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2009, 72, 833.
- 49Pradhan, K. C.; Nayak, P. L. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2012, 3, 3045.
- 50Salapare, H. S.; Tiquio, M. G. J. P.; Ramos, H. J. Appl. Surf. Sci. 2013, 273, 444.
- 51Park, J.-M.; Kim, D.-S.; Kim, S.-R. J. Colloid Interface Sci. 2003, 264, 431.
- 52Zandén, C.; Voinova, M.; Gold, J.; Mörsdorf, D.; Bernhardt, I.; Liu, J. Eur. Polym. J. 2012, 48, 472.
- 53Cen, L.; Neoh, K. G.; Li; Kang, E. T. Biomacromolecules. 2004, 5, 2238.
- 54Li, X.; Jiang, Y.; Wang, F.; Fan, Z.; Wang, H.; Tao, C.; Wang, Z. RSC Adv. 2017, 7, 46480.
- 55Solouk, A.; Cousins, B. G.; Mirzadeh, H.; Seifalian, A. M. Biotechnol. Appl. Biochem. 2011, 58, 311.
- 56Peng, F.; Lu, L.; Sun, H.; Wang, Y.; Liu, J.; Jiang, Z. Chem. Mater. 2005, 17, 6790.
- 57Guo, R.; Hu, C.; Pan, F.; Wu, H.; Jiang, Z. J. Membr. Sci. 2006, 281, 454.
- 58Bandekar, J.; Klima, S. J. Mol. Struct. 1991, 263, 45.
- 59Kim, Y. J.; Kang, I. K.; Huh, M. W.; Yoon, S. C. Biomaterials. 2000, 21, 121.
- 60Kang, I.-K.; Kwon, O. H.; Lee, Y. M.; Sung, Y. K. Biomaterials. 1996, 17, 841.
- 61Yoshinyari, M.; Hakawa, T.; Matsuzaka, K.; Inoue, T.; Oda, Y.; Al., E.; Shimono, M.; Ide, T.; Sanaka, T. Biomed. Res. 2006, 27, 29.
- 62Liu, X.; Feng, Q.; Bachhuka, A.; Vasilev, K. ACS Appl. Mater. Interfaces. 2014, 6, 9733.
- 63Correia, D. M.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Carabineiro, S. A. C. C.; Ribelles, J. L. G. G.; Lanceros-Méndez, S. Prog. Org. Coat. 2015, 85, 151.
- 64Doliška, A.; Vesel, A.; Kolar, M.; Stana-Kleinschek, K.; Mozetič, M. Surf. Interface Anal. 2012, 44, 56.
- 65West, J. O. F.; Critchlow, G. W.; Lake, D. R.; Banks, R. Int. J. Adhes. Adhes. 2016, 68, 195.
- 66López-Pérez, P. M.; Marques, A. P.; Silva, R. M. P. D.; Pashkuleva, I.; Reis, R. L. J. Mater. Chem. 2007, 17, 4064.
- 67Li, A.; Shen, H.; Ren, H.; Wang, C.; Wu, D.; Martin, R. A.; Qiu, D. J. Mater. Chem. B. 2015, 3, 1379.
- 68Hariraksapitak, P.; Supaphol, P. J. Appl. Polym. Sci. 2010, 117, 3406.
- 69Chen, J.-P.; Chiang, Y. J. Nanosci. Nanotechnol. 2010, 10, 7560.
- 70Mirjalili, F.; Mohammadi, H.; Azimi, M.; Hafezi, M.; Abu Osman, N. A. Ceram. Int. 2017, 43, 7573.
- 71Ghorbani, F.; Zamanian, A.; Behnamghader, A.; Daliri-Joupari, M. Surfaces and Interfaces. 2019, 15, 38.
- 72Valliant, E. M.; Jones, J. R. Soft Matter. 2011, 7, 5083.
- 73Ghorbani, F.; Zamanian, A.; Behnamghader, A.; Joupari, M. D. Mater. Sci. Eng. C. 2019, 94, 729.
- 74Kaynak Bayrak, G.; Demirtaş, T. T.; Gümüşderelioğlu, M. Carbohydr. Polym. 2017, 157, 803.
- 75Lei, B.; Shin, K. H.; Koh, Y. H.; Kim, H. E. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2014, 102, 1528.
- 76Ren, L.; Tsuru, K.; Hayakawa, S.; Osaka, A. Biomaterials. 2002, 23, 4765.
- 77Niu, L.; Kua, H.; Chua, D. H. C. Langmuir. 2010, 26, 4069.
- 78Shirosaki, Y.; Okamoto, K.; Hayakawa, S.; Osaka, A.; Asano, T. Biomed. Res. Int. 2015, 2015, 1.
- 79Shirosaki, Y.; Tsuru, K.; Hayakawa, S.; Osaka, A.; Lopes, M. A.; Santos, J. D.; Fernandes, M. H. Biomaterials. 2005, 26, 485.
- 80Shirosaki, Y. J. Ceram. Soc. Japan. 2012, 120, 555.
- 81Negahi Shirazi, A.; Fathi, A.; Suarez, F. G.; Wang, Y.; Maitz, P. K.; Dehghani, F. ACS Appl. Mater. Interfaces. 2016, 8, 1676.