Electrospun nanofibrous membranes for solid-phase extraction of estriol from aqueous solution
Correction(s) for this article
-
Erratum: Electrospun nanofibrous membranes for solid-phase extraction of estriol from aqueous solution
- Volume 137Issue 3Journal of Applied Polymer Science
- First Published online: August 23, 2019
Aline da S. Nectoux
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorLeonardo F. Medeiros
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorRoberta da S. Bussamara Rodrigues
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorRosane M. Duarte Soares
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorCorresponding Author
Andreia Neves Fernandes
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Correspondence to: A. N. Fernandes (E-mail: [email protected])Search for more papers by this authorAline da S. Nectoux
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorLeonardo F. Medeiros
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorRoberta da S. Bussamara Rodrigues
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorRosane M. Duarte Soares
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Search for more papers by this authorCorresponding Author
Andreia Neves Fernandes
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970 Brazil
Correspondence to: A. N. Fernandes (E-mail: [email protected])Search for more papers by this authorABSTRACT
Nowadays, efficient, economical, and environmentally friendly materials for the removal of emerging contaminants from the aquatic environment have been sought. Electrospun nanofibrous membranes contain fibers with diameters of submicron or nanometer scale, making them very promising adsorbent materials for use in several areas. In this context, the present study aims to synthesize and apply polymeric nanofiber membranes for solid-phase extraction of estriol from aqueous solution. Nanofiber membranes of poly(ε-caprolactone) (PCL) and polyamide-6 (PA-6) were tested as adsorbent materials and characterized by different techniques. The electrospinning time was evaluated, and the highest removal obtained for the PA-6 nanofiber was 76.5%, spun for 100 min, whereas for the PCL nanofiber, 80% time-independent removal was obtained. The thinner nanofibers had a larger contact area, therefore higher removals, except for the PCL nanofiber, which presented exposed beads on smaller thicknesses that impaired their efficiency. Furthermore, the nanofiber membranes have been applied for the determination of 1.0 mg L−1 of E3 in superficial water sample with satisfactory results. These aspects demonstrate that the synthesized nanofibers present an efficient material for the extraction of estriol: of high simplicity, low cost, and using green chemistry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47189.
REFERENCES
- 1Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hau, F. I.; Zhang, J.; Liang, S.; Wang, X. C. Sci. Total Environ. 2014, 473–474, 619.
- 2NORMAN-Network of reference laboratories, research centers and related organizations for monitoring of emerging environmental substances, Emerging substances - List of Emerging Substances latest update February 2016, http://www.norman-network.net
- 3Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S. E. A. T. M.; Ritsema, C. J. Int. Soil Water Conserv. Res. 2015, 3, 57.
- 4La Farré, M.; Pérez, S.; Kantiani, L.; Barceló, D. Trends Anal. Chem. 2008, 27, 991.
- 5Giulivo, M.; de Alda, M. L.; Capri, E.; Barceló, D. Environ. Res. 2016, 151, 251.
- 6Yang, B.; Ying, G.-G.; Zhao, J.-L.; Liu, S.; Zhou, L. J.; Chen, F. Water Res. 2012, 46, 2194.
- 7Tijani, J. O.; Fatoba, O. O.; Petrik, L. F. Water Air Soil Pollut. 2013, 224, 1.
- 8Jung, C.; Son, A.; Her, N.; Zoh, K.-D.; Cho, J.; Yoon, Y. J. Ind. Eng. Chem. 2015, 27, 1.
- 9Caliman, F. A.; Gavrilescu, M. Clean. 2009, 34, 277.
- 10Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G. M. Chemosphere. 2017, 174, 437.
- 11Chen, Y.; Zhang, K.; Zuo, Y. Sci. Total Environ. 2013, 463-464, 802.
- 12Sophia, C.; Lima, E. C. Ecotoxicol. Environ. Saf. 2018, 150, 1.
- 13Matafonova, G.; Batoev, V. Water Res. 2018, 132, 177.
- 14Liu, Z.-H.; Kanjo, Y.; Mizutani, S. Sci. Total Environ. 2009, 407, 731.
- 15Si, X.; Hu, Z.; Ding, D.; Fu, X. J. Environ. Sci. 2018. https://doi.org/10.1016/j.jes.2018.03.025
- 16Llorca, M.; Badia-Fabregat, M.; Rodríguez-Mozaz, S.; Caminal, G.; Vicent, T.; Barceló, D. Chemosphere. 2017, 184, 1054.
- 17Xue, W.; Xiao, K.; Liang, P.; Huang, X. J. Environ. Sci. 2018. https://doi.org/10.1016/j.jes.2018.01.004
- 18Pereira, V. J.; Galinha, J.; Crespo, M. T. B.; Matos, C. T.; Crespo, J. G. Sep. Purif. Technol. 2012, 95, 89.
- 19Van der Bruggen, B.; Everaert, K.; Wilms, D.; Vandecasteele, C. J. Membr. Sci. 2001, 193, 239.
- 20Bodzek, M.; Dudziak, M.; Luks-Betlej, K. Desalination. 2004, 161, 121.
- 21Bodzek, M.; Dudziak, M. Desalination. 2006, 198, 24.
- 22Chitpong, N.; Husson, S. M. J. Membr. Sci. 2017, 523, 418.
- 23Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. J. Hazard. Mater. 2011, 186, 182.
- 24Wu, C.; Wang, H.; Wei, Z.; Li, C.; Luo, Z. Appl. Surf. Sci. 2015, 346, 207.
- 25Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B. J. Membr. Sci. 2014, 454, 272.
- 26Pimolpun, K.; Pitt, S. ACS Appl. Mater. Interfaces. 2010, 2, 3619.
- 27Ramakrishna, S.; Jose, R.; Archana, P. S.; Nair, A. S.; Balamurugan, R.; Venugopal, J.; Teo, W. E. J. Mater. Sci. 2010, 45, 6283.
- 28Babitha, S.; Rachita, L.; Karthikeyan, K.; Shoba, E.; Janani, I.; Poornima, B.; Sai, K. P. Int. J. Pharm. 2017, 523, 52.
- 29Xu, Q.; Wu, S.-Y.; Wang, M.; Yin, X. Y.; Wen, Z. Y.; Ge, W. N.; Gu, Z. Z. Chromatographia. 2010, 71, 487.
- 30Ghorani, B.; Tucker, N. Food Hydrocoll. 2015, 51, 227.
- 31Costa, R. G. F.; Oliveira, J. E.; Paula, G. F.; Picciani, P. H. S.; Medeiros, E. S.; Mattoso, L. H. C.; Ribeiro, C. Polímeros. 2012, 22, 170.
- 32Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Macromol. Mater. Eng. 2013, 298, 504.
- 33Moheman, A.; Alam, M. S.; Gupta, A.; Dhakate, S. R.; Kumar, A.; Mohammad, A. RSC Adv. 2018, 6, 90100.
- 34Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28, 325.
- 35Deitzel, J. M.; Keinmeyer, J.; Harris, D.; Tan, N. C. B. Polymer. 2001, 42, 261.
- 36Liu, Q.; Zhu, J.; Zhang, L.; Qiu, Y. Renew. Sustain. Energy Rev. 2018, 81, 1825.
- 37Lavielle, N.; Popa, A. M.; Geus, M.; Hébraud, A.; Schlatter, G.; Thöny-Meyer, L.; Rossi, R. M. Eur. Polym. J. 2013, 49, 1331.
- 38Lima, D. L. D.; Calisto, V.; Esteves, V. I. Chemosphere. 2011, 84, 1072.
- 39Collins, G.; Federici, J.; Imura, Y.; Luiz, H.; Catalani, L. H. J. Appl. Phys. 2012, 111, 719.
- 40Pant, H. R.; Bajgai, M. P.; Yi, C.; Nirmala, R.; Nam, K. T.; Baek, W.; Kim, H. Y. Colloid. Surf. A: Physicochem. Eng. Asp. 2010, 370, 87.
- 41Guerrini, L. M.; Branciforti, M. C.; Canova, T.; Bretas, R. E. S. Mater. Res. 2009, 12, 74.
- 42Zhu, H.; Li, R.; Wu, X.; Chen, K.; Che, J. Eur. Polym. J. 2017, 86, 154.
- 43Komalan, C.; George, K. E.; Varughese, K. T.; Mathew, V. S.; Thomas, S. Polym. Degrad. Stab. 2008, 93, 2104.
- 44Bassi, A.; Gough, J.; Zakikhani, M.; Downes, S. Electrospinning for Tissue Regeneration, Manchester, United Kingdom, 2011. p. 93.
10.1533/9780857092915.2.93 Google Scholar
- 45Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. J. Colloid Interface Sci. 2004, 273, 381.
- 46Cai, Y.; Li, Q.; Wei, Q.; Wu, Y.; Song, L.; Hu, Y. J. Mater. Sci. 2008, 43, 6132.
- 47Oliveira, J. E.; Scagion, V. P.; Grassi, V.; Correa, D. S.; Mattoso, L. H. C. Sens. Actuators B Chem. 2012, 171-172, 249.
- 48Fatarella, E.; Spinelli, D.; Ruzzantea, M.; Pognib, R. J. Mol. Catal. B-Enzym. 2012, 102, 41.
10.1016/j.molcatb.2014.01.012 Google Scholar
- 49Balgis, R.; Kartikowati, C. W.; Ogi, T.; Gradon, L.; Bao, L.; Seki, K.; Okuyama, K. Chem. Eng. Sci. 2015, 137, 947.
- 50Ribani, M.; Bottoli, C. B. G.; Collins, C. H.; Jardim, I. C. S. F.; Melo, L. F. C. Quim. Nova. 2004, 27, 771.
- 51Shen, B.; Wen, X.-h; Huang, X. Chem. Eng. J. 2017, 327, 597.
- 52Nguyen, L. N.; Hai, F. I.; Yang, S.; Kang, J.; Leusch, F. D. L.; Roddick, F.; Price, W. E.; Nghiem, L. D. Int. Biodeter. Biodegr. 2014, 88, 169.
- 53Liu, J.; Li, S.; Li, X.; Gao, Y.; Ling, W. Environ. Technol. 2017, 19, 2423.
- 54Ogata, F.; Tominaga, H.; Yabutani, H.; Kawasaki, N. J. Oleo Sci. 2011, 60, 609.
- 55Li, Y.; Zhang, A. Chemosphere. 2014, 105, 24.
- 56Sadmani, A. H. M. A.; Andrews, R. C.; Bagley, D. M. J. Membr. Sci. 2014, 450, 272.
- 57Yoon, Y.; Westerhoff, P.; Snyder, S. A.; Wert, E. C. J. Membr. Sci. 2006, 270, 88.
- 58Comerton, A. M.; Andrews, R. C.; Bagley, D. M.; Hao, C. J. Membr. Sci. 2008, 313, 323.