Mechanical coagulation in emulsion polymerizations
Vern Lowry
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorMohamed S. El-Aasser
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorJohn W. Vanderhoff
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorAndrew Klein
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorVern Lowry
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorMohamed S. El-Aasser
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorJohn W. Vanderhoff
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorAndrew Klein
Emulsion Polymers Institute and Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
Search for more papers by this authorAbstract
Coagulum formation for different emulsion polymerizations was correlated to various agitation parameters. For low Reynolds numbers, rotational speed was shown to be important, whereas, for high Reynolds numbers, power consumption was the important parameter. These results were theoretically tied to first-order coagulation kinetics by incorporating shear rate relationships for flow in an agitated tank. For low Reynolds numbers, the average shear rate was assumed to be proportional to the rotational speed of the impeller. And for high Reynolds numbers, Kolmogorov's theory of locally isotropic flow was employed to relate the average shear rate to the power consumption.
References
- 1 H. A. Abramson, Electrokinetic Phenomena, The Chemical Catalog Co., New York, 1934.
- 2 R. Keller, The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, NY, 1955.
- 3 A. A. Kamel, C. M. Ma, M. S. El-Aasser, F. J. Micale, and J. W. Vanderhoff, J. Disp. Sci. Tech., 2, 215 (1981).
- 4 H. R. Kruyt, Colloid Science, Elsevier, New York, 1952, Vol. I.
- 5 J. W. Vanderhoff and H. J. van den Hul, J. Macromol. Sci. Chem., A7, 677 (1973).
- 6 H. van Olphen, An Introduction to Clay Colloid Chemistry, Interscience, New York, 1963.
- 7 B. V. Deryaguin and L. D. Landau, Acta Physicochim. USSR, 14, 633, 1941.
- 8 E. J. W. Verway and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 1948.
- 9 R. H. Ottewill, Polymer Colloids, NATO/ASI Tech. Univ. of Trondheim, 1975.
- 10 J. Lyklema, Adv. Coll. Interface Sci., 2, 65 (1968).
- 11 D. H. Napper and R. J. Hunter, MTI, Int. Rev. Sci., M. Kerker, Ed., Butterworths, London, 1972, pp. 225, Series I, Vol. 7.
- 12 D. H. Napper and R. J. Hunter, MTI, Int. Rev. Sci., M. Kerker, Ed., Butterworths, London, 1973, Series II, Vol. 7, Chap. 3, p. 161.
- 13 R. H. Ottewill, Non-Ionic Surfactants, M. J. Schick, Ed., Dekker, New York, 1967, Chap. 19, p. 627.
- 14 B. Vincent, Adv. Coll. Interface Sci., 4, 193 (1974).
- 15 M. von Smoluchowski, Physik, A17, 557, 585 (1916); Z. Physik. Chem., 92, 129 (1917).
- 16 J. Th. G. Overbeek, Colloid Science, H. R. Kruyt, Ed., Elsevier, New York. 1952, Vol. 2, p. 290.
- 17
M. von Smoluchowski,
Z. Physik. Chem.,
92, 155
(1917);
P. Tuorila,
Kolloidchem. Beihefte,
24, 1
(1927);
H. Mueller,
Kolloidchem. Beihefte,
27, 223
(1928).
10.1007/BF02558510 Google Scholar
- 18 G. R. Zeichner and J. Schowalter, J. Coll. Interface Sci., 71, 237 (1979).
- 19 W. B. DeLauder and W. Heller, J. Coll. Interface Sci., 35, 308 (1971).
- 20 S. Diep, W. Heller, and S. Kalousdian, J. Coll. Interface Sci., 70, 328 (1979).
- 21 W. Heller and J. Peters, J. Coll. Interface Sci., 35, 300 (1971).
- 22 W. Heller and J. Peters, J. Coll. Interface Sci., 32, 592 (1970).
- 23 W. Heller and W. B. DeLauder, J. Coll. Interface Sci., 35, 60 (1971).
- 24 J. Peters and W. Heller, J. Coll. Interface Sci., 33, 578 (1970).
- 25 A. B. Metzner, AIChE J., 7(1), 3 (1961).
- 26 G. K. Batchelor, The Theory of Homogeneous Turbulence, MIT Press, Cambridge, MA, 1953.
- 27 D. M. Levins and J. W. Glastonbury, Chem. Eng. Sci., 27, 537 (1972).
- 28 R. Shinnar and J. M. Church, Ind. Eng. Chem., 52, 3 (1966).
- 29 R. Shinnar, J. Fluid Mech., 10, 259 (1960).
- 30 H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA, 1972.
- 31 D. T. Tomi and D. F. Bagster, Trans. IChemE., 49, 1 (1978).
- 32 L. A. Cutter, AIChE J., 12(1), 35 (1966).
- 33 T. L. Minick, unpublished research, Lehigh University, 1981.
- 34 R. W. Rubens, MS. thesis, Newark College of Engineering, 1958.