Glucose electrocatalysts derived from mono- or dicarbene coordinated nickel(II) complexes and their mesoporous carbon composites
Zhoveta Yhobu
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
Contribution: Data curation (lead), Formal analysis (lead)
Search for more papers by this authorBrinda K. N.
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Data curation (supporting), Formal analysis (supporting), Validation (lead)
Search for more papers by this authorGautam Achar
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Investigation (supporting), Methodology (supporting), Validation (supporting)
Search for more papers by this authorJan Grzegorz Małecki
Institute of Chemistry, University of Silesia, Katowice, Poland
Contribution: Investigation (supporting), Methodology (lead)
Search for more papers by this authorRangappa S. Keri
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Resources (supporting), Supervision (supporting)
Search for more papers by this authorCorresponding Author
Nagaraju D. H.
Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
Correspondence
D. H. Nagaraju, Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India.
Email: [email protected]
Srinivasa Budagumpi, Centre for Nano and Material Sciences, Jain University, Bangalore, India.
Email: [email protected]; [email protected]
Contribution: Funding acquisition (lead), Methodology (supporting), Supervision (equal)
Search for more papers by this authorCorresponding Author
Srinivasa Budagumpi
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Correspondence
D. H. Nagaraju, Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India.
Email: [email protected]
Srinivasa Budagumpi, Centre for Nano and Material Sciences, Jain University, Bangalore, India.
Email: [email protected]; [email protected]
Contribution: Conceptualization (lead), Supervision (lead)
Search for more papers by this authorZhoveta Yhobu
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
Contribution: Data curation (lead), Formal analysis (lead)
Search for more papers by this authorBrinda K. N.
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Data curation (supporting), Formal analysis (supporting), Validation (lead)
Search for more papers by this authorGautam Achar
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Investigation (supporting), Methodology (supporting), Validation (supporting)
Search for more papers by this authorJan Grzegorz Małecki
Institute of Chemistry, University of Silesia, Katowice, Poland
Contribution: Investigation (supporting), Methodology (lead)
Search for more papers by this authorRangappa S. Keri
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Contribution: Resources (supporting), Supervision (supporting)
Search for more papers by this authorCorresponding Author
Nagaraju D. H.
Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
Correspondence
D. H. Nagaraju, Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India.
Email: [email protected]
Srinivasa Budagumpi, Centre for Nano and Material Sciences, Jain University, Bangalore, India.
Email: [email protected]; [email protected]
Contribution: Funding acquisition (lead), Methodology (supporting), Supervision (equal)
Search for more papers by this authorCorresponding Author
Srinivasa Budagumpi
Centre for Nano and Material Sciences, Jain University, Bangalore, India
Correspondence
D. H. Nagaraju, Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India.
Email: [email protected]
Srinivasa Budagumpi, Centre for Nano and Material Sciences, Jain University, Bangalore, India.
Email: [email protected]; [email protected]
Contribution: Conceptualization (lead), Supervision (lead)
Search for more papers by this authorFunding information: Department of Science and Technology, New Delhi, India, Grant/Award Number: DST/TDT/DDP-33/2018
Abstract
Molecular electrocatalysts that contain a metal atom under precise ligand field in a definite geometry feasible for redox reactions has boundless significance in numerous electrocatalytic reactions. Herein, we report nickel-based molecular electrocatalysts anchored on the sterically varied 1,2,4-triazol-5-ylidene ligands. The two metal complexes bearing different ligand system wherein one is mono-NHC nickel(II) complex and the other is a bis-NHC nickel(II) complex were compared and studied in terms of morphology and electrochemical glucose sensing. The kinetics and sensitivity of the nickel(II) complexes were significantly enhanced by the mesoporous carbon and demonstrated high electrode sensitivity (2.57–124.92 μA mM−1 cm−2) at a fixed potential towards glucose detection. The chronoamperometric studies evidenced the detection of glucose up to 27.5 mM with a linear range of detection up to 9.5 mM (LOD of 44.59 μM). The selectivity towards glucose in the presence of other blood constituents was investigated. Finally, the stability was studied after 18 days of electrode preparation, and negligible variation in the glucose sensing performance was found. The electrocatalysts prepared are found to be the viable candidates for potential engineering high-performance molecular non-enzymatic glucose sensor.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
aoc6446-sup-0001-Supporting Information.docxWord 2007 document , 576 KB |
Figure S1. The π–π stacking interactions operating between the coumarin heterocyclic and the mesityl ring systems of adjacent complex molecules of 7. Hydrogen atoms are excluded for clarity. Figure S2. 1H NMR spectrum of the coumarin functionalized 1,2,4- triazolium salt 4. (Solvent-DMSO) Figure S3. 13C NMR spectrum of the coumarin functionalized 1,2,4- triazolium salt 4. (Solvent-DMSO) Figure S4. 1H NMR spectrum of the coumarin functionalized 1,2,4- triazolium salt 5. (Solvent-DMSO) Figure S5. 13C NMR spectrum of the coumarin functionalized 1,2,4- triazolium salt 5. (Solvent-DMSO) Figure S6. 1H NMR spectrum of the Ni complex 7 derived from coumarin functionalized 1,2,4- triazolium salt 4. (Solvent-CDCl3) Figure S7. 1H NMR spectrum of the Ni complex 8 derived from coumarin functionalized 1,2,4- triazolium salt 5. (Solvent-DMSO) Figure S8. 13C NMR spectrum of the Ni complex 8 derived from coumarin functionalized 1,2,4- triazolium salt 5. (Solvent-DMSO) Figure S9. FT–IR spectrum of the coumarin functionalized 1,2,4- triazolium salt 4 and its corresponding nickel complex 7. Figure S10. FT–IR spectrum of the coumarin functionalized 1,2,4- triazolium salt 5 and its corresponding nickel complex 8. Table S1. Crystallographic data and the structure refinement parameters for the nickel NHC complex 7. Table S2. Important bond distances and bond angles of nickel NHC complex 7. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a) J. Brauker, Diabetes Technol. Therapeut. 2009, 11, S25; b) G. Van den Berghe, A. Wilmer, G. Hermans, W. Meersseman, P. J. Wouters, I. Milants, E. Van Wijngaerden, H. Bobbaers, R. Bouillon, N. Engl. J. Med. 2006, 354, 449.
- 2L. C. Clark, C. Lyons, Ann. N. Y. Acad. Sci. 1962, 102, 29.
- 3a) S. Ferri, K. Kojima, K. Sode, J. Diabetes. Sci. Technol. 2011, 5, 1068; b) S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, F. S. Sheu, Anal. Chim. Acta 2011, 703, 124.
- 4a) A. Heller, B. Feldman, Chem. Rev. 2008, 108, 2482; b) S. B. Bankar, M. V. Bule, R. S. Singhal, L. Ananthanarayan, Biotechnol. Adv. 2009, 27, 489.
- 5R. Wilson, A. P. F. Turner, Biosens. Bioelectron. 1992, 7, 165.
- 6a) D.-W. Hwang, S. Lee, M. Seo, T. D. Chung, Anal. Chim. Acta 2018, 1033, 1; b) D. Bruen, C. Delaney, L. Florea, D. Diamond, Sensors 2017, 17, 1866.
- 7a) D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang, H. Zhang, Nanoscale 2020, 12, 3535; b) S. Lupu, C. Lete, M. Marin, N. Totir, P. C. Balaure, Electrochim. Acta 2009, 54, 1932; c) B. Singh, E. Dempsey, F. Laffir, Sens. Actuators B Chem. 2014, 205, 401.
- 8a) S. Budagumpi, R. A. Haque, A. W. Salman, Coord. Chem. Rev. 2012, 256, 1787; b) S. Budagumpi, R. S. Keri, G. Achar, K. N. Brinda, Adv. Synth. Catal 2020, 362, 970; c) S. Kaufhold, L. Petermann, R. Staehle, S. Rau, Coord. Chem. Rev. 2015, 304-305, 73.
- 9a) G. Achar, C. R. Shahini, S. A. Patil, J. G. Małecki, S.-H. Pan, A. Lan, X.-R. Chen, S. Budagumpi, J. Inorg. Biochem. 2018, 183, 43; b) B. M. Geetha, J. G. Małecki, M. Alwarsamy, R. S. Keri, V. S. Betageri, S. Budagumpi, J. Mol. Liq. 2020, 316, 113809.
- 10a) S. A. Patil, S. A. Patil, R. Patil, R. S. Keri, S. Budagumpi, G. R. Balakrishna, M. Tacke, Future Med. Chem 2015, 7, 1305; b) A. Kumar, P. Ghosh, Eur. J. Inorg. Chem. 2012, 25, 3955; c) K. N. Brinda, J. G. Małecki, Z. Yhobu, D. H. Nagaraju, S. Budagumpi, E. S. Erakulan, R. Thapa, J. Phys. Chem. C 2021, 125, 3793.
- 11M. U. A. Prathap, C. A. H. Aguilar, T. Pandiyan, R. Srivastava, J. Appl. Electrochem. 2013, 43, 939.
- 12J. P. Liu, J. Chen, J. Zhao, Y. Zhao, L. Li, H. Zhang, Synthesis 2003, 17, 2661.
- 13M. V. Kulkarni, V. D. Patil, Arch. Pharm. (Weinhiem) 1981, 314, 708.
- 14a) C. Dash, M. M. Shaikh, P. Ghosh, J. Chem. Sci. 2011, 123, 97; b) L. Zhang, Y.-F. Han, Dalton Trans. 2018, 47, 4267.
- 15V. Ritleng, A. M. Oertel, M. J. Chetcuti, Dalton Trans. 2010, 39, 153.
- 16a) A. P. Prakasham, P. Ghosh, Inorg. Chim. Acta 2015, 431, 61; b) L. Postigo, B. Royo, Adv. Synth. Catal. 2012, 354, 2613.
- 17B. M. Geetha, K. N. Brinda, G. Achar, J. G. Małecki, M. Alwarsamy, V. S. Betageri, S. Budagumpi, J. Mol. Liq. 2020, 301, 112352.
- 18a) W. A. Herrmann, G. Gerstberger, M. Spiegler, Organometallics 1997, 16, 2209; b) C. Buron, L. Stelzig, O. Guerret, H. Gornitzka, V. Romanenkob, G. Bertrand, J. Organomet. Chem. 2002, 664, 70.
- 19a) M. O. Karataş, B. Olgundeniz, S. Günal, İ. Özdemir, B. Alıcı, E. Çetinkaya, Bioorg. Med. Chem. 2016, 24, 643; b) G. Achar, K. Uppendranatha, V. C. Ramya, A. Biffis, R. S. Keri, S. Budagumpi, Polyhedron 2017, 123, 470; c) A. A. Danopoulos, T. Simler, P. Braunstein, Chem. Rev. 2019, 119, 3730.
- 20H. V. Huynh, L. R. Wong, P. S. Ng, Organometallics 2008, 27, 2231.
- 21a) S. V. Shishkina, I. S. Konovalova, S. M. Kovalenko, P. V. Trostianko, A. O. Geleverya, N. D. Bunyatyan, CrystEngComm 2019, 21, 6945; b) P. P. Ghosh, G. Pal, S. Paula, A. R. Das, Green Chem. 2012, 14, 2691.
- 22K. N. Brinda, G. Achar, J. G. Małecki, S. Budagumpi, D. H. Nagaraju, V. Suvina, R. G. Balakrishna, Biosens. Bioelectron. 2019, 134, 24.
- 23a) V. Buk, M. E. Pemble, Electrochim. Acta 2019, 298, 97; b) D. Branagan, C. B. Breslin, Sens. Actuators B Chem. 2019, 282, 490; c) K. Justice Babu, S. Sheet, Y. S. Lee, G. Gnana Kumar, ACS Sustainable Chem. Eng. 2018, 6, 1909.
- 24a) X. Gao, X. Du, D. Liu, H. Gao, P. Wang, J. Yan, Sci. Rep. 2020, 10, 1365; b) J. L. Ma, B. C. Yin, X. Wu, B. C. Ye, Anal. Chem. 2017, 89, 1323.
- 25a) S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, Sens. Actuators B Chem. 2011, 155, 592; b) J. Wang, Chem. Rev. 2008, 108, 814.
- 26a) G. Gulimar, Y. V. Kaneti, J. Henzie, S. Chatterjee, J. Na, B. Yuliarto, N. Nugraha, A. Patah, A. Bhaumik, Y. Yamauchi, Chem. Sci. 2020, 11, 3644; b) Y. X. Zhang, J. Y. Xu, J. F. Xia, F. F. Zhang, Z. H. Wang, ACS Appl. Mater. Interfaces 2018, 10, 39151.
- 27(a)A. B. Urgunde, A. Kumar, K. P. Shejale, R. K. Sharma, R. Gupta, ACS Appl. Nano Mater. 2018, 1, 5571. (b)W. W. Mao, H. P. He, P. C. Sun, Z. Z. Ye, J. Y. Huang, ACS Appl. Mater. Interfaces 2018, 10, 15088.
- 28a) A. Scandurra, F. Ruffino, S. Sanzaro, M. Grazia Grimaldi, Sens. Actuators B Chem. 2019, 301, 127113; b) B. Wang, S. Li, J. Liu, M. Yu, Mater. Res. Bull. 2014, 49, 521; c) C. Yang, M. E. Denno, P. Pyakurel, B. J. Venton, Inorg. Chim. Acta 2015, 887, 17; d) W. Raza, K. Ahmad, Mater. Lett. 2018, 212, 231.
- 29a) Y. Koskun, A. Savk, B. Sen, F. Sen, Anal. Chim. Acta 2018, 1010, 37; b) C. Z. Zhu, G. H. Yang, H. Li, D. Du, Y. H. Lin, Anal. Chem. 2015, 87, 230.