Modulating the Polarity of Imine Bonds in Donor–Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Production
Zixuan Li
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorBingzi Cai
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQun Li
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorDi Zhang
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorYizhao Liang
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorYuanyuan Liu
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorCorresponding Author
Yalong Jiao
Hebei Key Laboratory of Photophysics Research and Application, College of Physics, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Arne Thomas
Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaojia Zhao
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZixuan Li
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorBingzi Cai
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQun Li
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorDi Zhang
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorYizhao Liang
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorYuanyuan Liu
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorCorresponding Author
Yalong Jiao
Hebei Key Laboratory of Photophysics Research and Application, College of Physics, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Arne Thomas
Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaojia Zhao
Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Tuning the polarity of imine (C═N) bonds in donor–acceptor covalent organic frameworks (COFs) with fluorinated units balances exciton binding and charge separation. A moderate C═N polarity delivers optimal H₂ evolution (14.0 mmol h⁻¹ g⁻¹), offering insights into polarity–performance relationships in COF photocatalysts.
Abstract
The development of imine-linked covalent organic frameworks (COFs) has also drawn attention to the influence of the nature of imine binding, including its orientation and possible protonation, on the chemical and physical properties of imine COFs. However, the influence of the polarity of imine bond (C═N) on the photocatalytic performance of COFs has not yet been described. In this work, we synthesized a series of imine COFs with differently polarized C═N bonds by altering the C═N bond orientation and regulating the donor–acceptor (D–A) strength, respectively. The less polarized C═N bond for one of the COFs possesses a faster charge separation with a decrease of exciton binding energy (Eb). In contrast, the imine COF with more polarized C═N bond exhibits a stronger internal electric field contributing to a more efficient charge transfer. Taking into account this trade-off between binding energy and charge transfer concerning the effect of C═N polarity on the photocatalytic performances, the imine COF with moderately polarized C═N bond shows the highest hydrogen evolution performance of 14.0 mmol h−1 g−1. This work provides evidence that the polarity of C═N should be taken into account when designing and tuning the properties of imine COFs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202509444-sup-0001-SuppMat.docx4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 2H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev. 2020, 49, 4135–4165.
- 3C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585.
- 4X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871–6913.
- 5K. T. Tan, S. Ghosh, Z. Y. Wang, F. X. Wen, D. Rodriguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. L. Feng, A. Thomas, D. L. Jiang, Nat. Rev. Methods Primers 2023, 3.
- 6T. Banerjee, K. Gottschling, G. Savasci, C. Ochsenfeld, B. V. Lotsch, ACS Energy Lett. 2018, 3, 400–409.
- 7Y. Wan, L. Wang, H. Xu, X. Wu, J. Yang, J. Am. Chem. Soc. 2020, 142, 4508–4516.
- 8M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J. L. Wang, D. Q. Yuan, Y. Q. Lan, Angew. Chem. Int. Ed. 2019, 58, 12392–12397.
- 9Z. Fu, X. Wang, A. M. Gardner, X. Wang, S. Y. Chong, G. Neri, A. J. Cowan, L. Liu, X. Li, A. Vogel, R. Clowes, M. Bilton, L. Chen, R. S. Sprick, A. I. Cooper, Chem. Sci. 2020, 11, 543–550.
- 10C. Xia, K. O. Kirlikovali, T. H. C. Nguyen, X. C. Nguyen, Q. B. Tran, M. K. Duong, M. T. Nguyen Dinh, D. L. T. Nguyen, P. Singh, P. Raizada, V.-H. Nguyen, S. Y. Kim, L. Singh, C. C. Nguyen, M. Shokouhimehr, Q. V. Le, Coord. Chem. Rev. 2021, 446, 214117.
- 11X. Y. Wang, L. J. Chen, S. Y. Chong, M. A. Little, Y. Z. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180–1189.
- 12J. Zhao, J. Ren, G. Zhang, Z. Zhao, S. Liu, W. Zhang, L. Chen, Chem.-Eur. J. 2021, 27, 10781–10797.
- 13W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y. B. Zhang, K. Wen, Angew. Chem. Int. Ed. 2021, 60, 1869–1874.
- 14F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, Q. Zhang, Nat. Commun. 2020, 11, 5534.
- 15M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Lobermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802–17807.
- 16S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017–2021.
- 17C. He, S. Tao, R. Liu, Y. Zhi, D. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202403472.
- 18J. R. Wang, K. Song, T. X. Luan, K. Cheng, Q. Wang, Y. Wang, W. W. Yu, P. Z. Li, Y. Zhao, Nat. Commun. 2024, 15, 1267.
- 19Y. Xia, W. Zhang, S. Yang, L. Wang, G. Yu, Adv. Mater. 2023, 35, e2301190.
- 20C. Qian, L. L. Feng, W. L. Teo, J. W. Liu, W. Q. Zhou, D. D. Wang, Y. L. Zhao, Nat. Rev. Chem. 2022, 6, 881–898.
- 21L. Cusin, H. Peng, A. Ciesielski, P. Samori, Angew. Chem. Int. Ed. 2021, 60, 14236–14250.
- 22X. J. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Y. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, J. Am. Chem. Soc. 2019, 141, 6623–6630.
- 23A. Halder, S. Karak, M. Addicoat, S. Bera, A. Chakraborty, S. H. Kunjattu, P. Pachfule, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2018, 57, 5797–5802.
- 24S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524–19527.
- 25X. J. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Y. Ye, G. Y. Tian, J. Schmidt, A. Thomas, Chem. Mater. 2019, 31, 3274–3280.
- 26Z. A. Lan, G. Zhang, X. Chen, Y. Zhang, K. A. I. Zhang, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 10236–10240.
- 27Y. Qian, D. Li, Y. Han, H. L. Jiang, J. Am. Chem. Soc. 2020, 142, 20763–20771.
- 28J. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23845–23853.
- 29H. He, R. C. Shen, P. Zhang, G. J. Liang, X. Li, J. Mater. Chem. A 2024, 12, 227–232.
- 30X. Tian, X. Huang, J.-W. Shi, J. Zhou, C. Guo, R. Wang, Y.-R. Wang, M. Lu, Q. Li, Y. Chen, S.-L. Li, Y.-Q. Lan, CCS Chem 2023, 5, 2557–2566.
- 31X. Zhao, S. Shang, H. Liu, C. Peng, J. Hu, Chemosphere 2024, 356, 141947.
- 32T. Joshi, C. Chen, H. Li, C. S. Diercks, G. Wang, P. J. Waller, H. Li, J. L. Bredas, O. M. Yaghi, M. F. Crommie, Adv. Mater. 2019, 31, e1805941.
- 33S. Jin, M. Supur, M. Addicoat, K. Furukawa, L. Chen, T. Nakamura, S. Fukuzumi, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7817–7827.
- 34R. Shen, X. Li, C. Qin, P. Zhang, X. Li, Adv. Energy Mater. 2023, 13, 2203695.
- 35D. H. Streater, E. R. Kennehan, D. Wang, C. Fiankor, L. Chen, C. Yang, B. Li, D. Liu, F. Ibrahim, I. Hermans, K. L. Kohlstedt, L. Luo, J. Zhang, J. Huang, J. Am. Chem. Soc. 2024, 146, 4489–4499.
- 36J. Yang, S. Ghosh, J. Roeser, A. Acharjya, C. Penschke, Y. Tsutsui, J. Rabeah, T. Wang, S. Y. Djoko Tameu, M. Y. Ye, J. Gruneberg, S. Li, C. Li, R. Schomacker, R. Van De Krol, S. Seki, P. Saalfrank, A. Thomas, Nat. Commun. 2022, 13, 6317.
- 37L. D. Tran, K. F. Presley, J. K. Streit, J. Carpena-Núñez, L. K. Beagle, T. A. Grusenmeyer, M. J. Dalton, R. A. Vaia, L. F. Drummy, N. R. Glavin, L. A. Baldwin, Chem. Mater., 2022, 34, 529–536.
- 38W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902–16909.
- 39J. Yang, A. Acharjya, M. Y. Ye, J. Rabeah, S. Li, Z. Kochovski, S. Youk, J. Roeser, J. Gruneberg, M. Schwarze, T. Wang, Y. Lu, R. van de Krol, M. Oschatz, R. Schomacker, P. Saalfrank, A. Thomas, C. Penschke, Angew. Chem. Int. Ed. 2021, 60, 19797–19803.
- 40W. Dong, Z. Qin, K. Wang, Y. Xiao, X. Liu, S. Ren, L. Li, Angew. Chem. Int. Ed. 2023, 62, e202216073.
- 41Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang, Y. Chen, ACS Catal. 2021, 11, 2098–2107.
- 42X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 2435–2445.