Rational Design of Type-I Photodynamic Agents
Kun-Xu Teng
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorLi-Ya Niu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorJiahui Li
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorDongsheng Zhang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 P.R. China
Search for more papers by this authorCorresponding Author
Qing-Zheng Yang
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
E-mail: [email protected]
Search for more papers by this authorKun-Xu Teng
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorLi-Ya Niu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorJiahui Li
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
Search for more papers by this authorDongsheng Zhang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 P.R. China
Search for more papers by this authorCorresponding Author
Qing-Zheng Yang
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
This Minireview offers a comprehensive overview of Type-I photodynamic therapy and outlines two design strategies for Type-I photodynamic agents: thermodynamic modulation through molecular engineering to block Type-II excitation energy transfer, and kinetic optimization of photoinduced electron/hydrogen transfer processes to enhance Type-I pathway.
Abstract
Type-I photodynamic agents can not only produce cytotoxic reactive oxygen species, but also directly damage biomolecules through electron/hydrogen transfer process, exhibiting reduced dependence on oxygen concentration in photodynamic therapy (PDT). The rational design of Type-I photodynamic agents has attracted increasing attention. This minireview provides a comprehensive overview of Type-I PDT and its advantages in treating hypoxic tumors. It systematically outlines two complementary design strategies: i) thermodynamic modulation through molecular engineering to block the Type-II energy transfer pathway, and ii) kinetic enhancement of electron/hydrogen transfer to favor the Type-I mechanism. Finally, key challenges in Type-I PDT are discussed, and future perspectives are highlighted to facilitate the clinical translation of Type-I photodynamic agents. We hope this review will stimulate further progress in the development of innovative PDT.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1D. W. Felsher, Nat. Rev. Cancer 2003, 3, 375–379.
- 2E. Nestoros, A. Sharma, E. Kim, J. S. Kim, M. Vendrell, Nat. Rev. Chem. 2025, 9, 46–60.
- 3P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, Ca-Cancer J. Clin. 2011, 61, 250–281.
- 4X. Li, J. F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 2020, 17, 657–674.
- 5T. C. Pham, V. N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454–13619.
- 6W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488–6519.
- 7D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, D. J. Robinson, Cancers 2017, 9, 19.
- 8M. Piksa, C. Lian, I. C. Samuel, K. J. Pawlik, I. D. W. Samuel, K. Matczyszyn, Chem. Soc. Rev. 2023.
- 9L. Wu, Y. Liu, W. Zeng, Y. Ishigaki, S. Zhou, X. Wang, Y. Sun, Y. Zhang, X. Jiang, T. Suzuki, D. Ye, J. Am. Chem. Soc. 2023, 145, 27838–27849.
- 10K. A. Ryu, C. M. Kaszuba, N. B. Bissonnette, R. C. Oslund, O. O. Fadeyi, Nat. Rev. Chem. 2021, 5, 322–337.
- 11A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn. Ther. 2005, 2, 1–23.
- 12J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323–5351.
- 13A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn. Ther. 2004, 1, 279–293.
- 14C. S. Foote, Photochem. Photobiol. 1991, 54, 659–659.
- 15G. Ferraudi, G. A. Argüello, H. Ali, J. E. van Lier, Photochem. Photobiol. 1988, 47, 657–660.
- 16D. Chen, Q. Xu, W. Wang, J. Shao, W. Huang, X. Dong, Small 2021, 17, e2006742.
- 17H. Ma, W. Xu, X. Tang, Y. Kang, J.-F. Xu, X. Zhang, CCS Chem. 2025, 7, 832–842.
- 18J. Miao, Y. Huo, G. Yao, Y. Feng, J. Weng, W. Zhao, W. Guo, Angew. Chem. Int. Ed. 2022, 61, e202201815.
- 19Y.-Y. Wang, Y.-C. Liu, H. Sun, D.-S. Guo, Coord. Chem. Rev. 2019, 395, 46–62.
- 20M. Li, Y. Xu, X. Peng, J. S. Kim, Acc. Chem. Res. 2022, 55, 3253–3264.
- 21J. M. Brown, W. R. Wilson, Nat. Rev. Cancer 2004, 4, 437–447.
- 22H. Huang, S. Banerjee, K. Qiu, P. Zhang, O. Blacque, T. Malcomson, M. J. Paterson, G. J. Clarkson, M. Staniforth, V. G. Stavros, G. Gasser, H. Chao, P. J. Sadler, Nat. Chem. 2019, 11, 1041–1048.
- 23X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem. Int. Ed. 2018, 57, 11522–11531.
- 24Z. Deng, H. Li, S. Chen, N. Wang, G. Liu, D. Liu, W. Ou, F. Xu, X. Wang, D. Lei, P.-C. Lo, Y. Y. Li, J. Lu, M. Yang, M.-L. He, G. Zhu, Nat. Chem. 2023, 15, 930–939.
- 25H. Li, Y. Gu, Y. Ding, J. Huang, Z. Yang, P. Ding, M. Wang, L. Han, B. Yang, L. Guo, Y. Zhang, F. He, L. Tian, Angew. Chem. Int. Ed. 2025, 64, e202423023.
- 26K. Gollnick, Adv. Photochem. 1968, 6, 1–122.
- 27M. Zhu, H. Zhang, G. Ran, Y. Yao, Z.-S. Yang, Y. Ning, Y. Yu, R. Zhang, X.-X. Peng, J. Wu, Z. Jiang, W. Zhang, B.-W. Wang, S. Gao, J.-L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204330.
- 28S. Yao, F. Xu, Y. Wang, J. Shang, S. Li, X. Xu, Z. Liu, W. He, Z. Guo, Y. Chen, J. Am. Chem. Soc. 2025, 147, 11132–11144.
- 29Y. Xu, D. An, T. Zhang, X. Wu, S. Wang, J. Shao, L.-L. Qu, Y. Guo, X. Dong, Adv. Mater. 2025, 37, 2418894.
- 30Q. Zhou, G. Huang, J. Si, Y. Wu, S. Jin, Y. Ji, Z. Ge, ACS Nano 2024, 18, 35671–35683.
- 31N. Ma, J. Wang, H. Tang, S. Wu, X. Liu, K. Chen, Y. Zhang, X. Yu, Adv. Sci. 2025, 12, 2413365.
- 32J. Li, Z. Zhuang, Z. Zhao, B. Z. Tang, View 2021, 20200121.
- 33J. Huang, J. Liu, J. Wu, M. Xu, Y. Lin, K. Pu, Angew. Chem. Int. Ed. 2025, 64, e202421962.
- 34S. Lyu, L. Li, J. Gao, D. Liu, F. Song, Smart Mol 2024, 2, e20240037.
- 35Q. Sun, Q. Su, Y. Gao, K. Zhou, W. Song, P. Quan, X. Yang, Z. Ge, Y. Zhang, G. He, Aggregate 2023, 4, e298.
- 36V. M. Lechner, M. Nappi, P. J. Deneny, S. Folliet, J. C. K. Chu, M. J. Gaunt, Chem. Rev. 2022, 122, 1752–1829.
- 37L. Zhu, X. Wang, T. Tian, Y. Chen, W. Du, W. Wei, J. Zhao, Z. Guo, X. Wang, Chem. Sci. 2024, 15, 10499–10507.
- 38J. Fujii, T. Homma, T. Osaki, Antioxidants 2022, 11, 501.
- 39M. Li, J. Xia, R. Tian, J. Wang, J. Fan, J. Du, S. Long, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2018, 140, 14851–14859.
- 40B. Lu, L. Wang, H. Tang, D. Cao, J. Mater. Chem. B 2023, 11, 4600–4618.
- 41T. Xiong, Y. Chen, M. Li, X. Chen, X. Peng, Small 2025, 21, 2501911.
- 42M. Ochsner, J. Photochem. Photobiol. B. 1997, 39, 1–18.
- 43E. Rossi, A. Van de Vorst, G. Jori, Photochem. Photobiol. 1981, 34, 447–454.
- 44J. Davila, A. Harriman, Photochem. Photobiol. 1989, 50, 29–35.
- 45N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
- 46C.-P. Hsu, Acc. Chem. Res. 2009, 42, 509–518.
- 47K.-X. Teng, W.-K. Chen, L.-Y. Niu, W.-H. Fang, G. Cui, Q.-Z. Yang, Angew. Chem. Int. Ed. 2021, 60, 19912–19920.
- 48K. Wen, H. Tan, Q. Peng, H. Chen, H. Ma, L. Wang, A. Peng, Q. Shi, X. Cai, H. Huang, Adv. Mater. 2022, 34, 2108146.
- 49J. Zhuang, B. Wang, H. Chen, K. Zhang, N. Li, N. Zhao, B. Z. Tang, ACS Nano 2023, 17, 9110–9125.
- 50W. Chen, Y. Zhang, H.-B. Yi, F. Wang, X. Chu, J.-H. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202300162.
- 51J. Zhao, R. Huang, Y. Gao, J. Xu, Y. Sun, J. Bao, L. Fang, S. Gou, ACS Materials Lett 2023, 5, 1752–1759.
- 52P. Xiao, W. Xie, J. Zhang, Q. Wu, Z. Shen, C. Guo, Y. Wu, F. Wang, B. Z. Tang, D. Wang, J. Am. Chem. Soc. 2023, 145, 334–344.
- 53M. Zhao, Y. Zhang, J. Miao, H. Zhou, Y. Jiang, Y. Zhang, M. Miao, W. Chen, W. Xing, Q. Li, Q. Miao, Adv. Mater. 2024, 36, 2305243.
- 54H. Zhou, Y. Zhang, R. Zhang, M. Zhao, W. Chen, Y. Liu, Y. Jiang, Q. Li, Q. Miao, M. Gao, Adv. Mater. 2023, 35, 2211485.
- 55R. A. Marcus, J. Chem. Phys. 1956, 24, 966–978.
- 56L. B. Josefsen, R. W. Boyle, Metal-Based Drugs 2008, 2008, 1–23.
10.1155/2008/276109 Google Scholar
- 57Q. Li, C. Huang, L. Liu, R. Hu, J. Qu, Cytom. A. 2018, 93, 997–1003.
- 58D. Chen, Q. Yu, X. Huang, H. Dai, T. Luo, J. Shao, P. Chen, J. Chen, W. Huang, X. Dong, Small 2020, 16, 2001059.
- 59H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D. A. Boothman, B. D. Sumer, J. Gao, J. Controlled Release 2011, 156, 276–280.
- 60X. Li, D. Lee, J. D. Huang, J. Yoon, Angew. Chem. Int. Ed. 2018, 57, 9885–9890.
- 61Y. Y. Zhao, L. Zhang, Z. Chen, B. Y. Zheng, M. Ke, X. Li, J. D. Huang, J. Am. Chem. Soc. 2021, 143, 13980–13989.
- 62K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, Chem. Sci. 2022, 13, 5951–5956.
- 63W. Chen, Z. Wang, M. Tian, G. Hong, Y. Wu, M. Sui, M. Chen, J. An, F. Song, X. Peng, J. Am. Chem. Soc. 2023, 145, 8130–8140.
- 64X. Cui, F. Fang, H. Chen, C. Cao, Y. Xiao, S. Tian, J. Zhang, S. Li, C.-S. Lee, Mater. Horiz. 2025, 12, 1002–1007.
- 65C. Li, J. Li, Y. Pang, L. Mei, W. Xu, Z. Zhang, C. Han, Y. Sun, Chem. Eng. J. 2024, 498, 155471.
- 66K.-X. Teng, L.-Y. Niu, N. Xie, Q.-Z. Yang, Nat. Commun. 2022, 13, 6179.
- 67J. Zhuang, G. Qi, Y. Feng, M. Wu, H. Zhang, D. Wang, X. Zhang, K. C. Chong, B. Li, S. Liu, J. Tian, Y. Shan, D. Mao, B. Liu, Nat. Commun. 2024, 15, 4943.
- 68J. Zhuang, S. Liu, B. Li, Z. Li, C. Wu, D. Xu, W. Pan, Z. Li, X. Liu, B. Liu, Angew. Chem. Int. Ed. 2025, 64, e202420643.
- 69K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, J. Am. Chem. Soc. 2023, 145, 4081–4087.
- 70X. Hu, Z. Fang, F. Sun, C. Zhu, M. Jia, X. Miao, L. Huang, W. Hu, Q. Fan, Z. Yang, W. Huang, Angew. Chem. Int. Ed. 2024, 63, e202401036.
- 71C. Lin, T. Kim, J. D. Schultz, R. M. Young, M. R. Wasielewski, Nat. Chem. 2022, 14, 786–793.
- 72L. Estergreen, A. R. Mencke, D. E. Cotton, N. V. Korovina, J. Michl, S. T. Roberts, M. E. Thompson, S. E. Bradforth, Acc. Chem. Res. 2022, 55, 1561–1572.
- 73H. Shigemitsu, K. Sato, S. Hagio, Y. Tani, T. Mori, K. Ohkubo, Y. Osakada, M. Fujitsuka, T. Kida, ACS Appl. Nano Mater. 2022, 5, 14954–14960.
- 74K.-X. Teng, D. Zhang, B.-K. Liu, Z.-F. Liu, L.-Y. Niu, Q.-Z. Yang, Angew. Chem. Int. Ed. 2024, 63, e202318783.
- 75B.-K. Liu, K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, ACS Materials Lett 2025, 7, 1947–1955.
- 76X. Zhao, S. He, J. Wang, J. Ding, S. Zong, G. Li, W. Sun, J. Du, J. Fan, X. Peng, Adv. Mater. 2023, 35, 2305163.
- 77Y. Liu, X. Chen, X. Liu, W. Guan, C. Lu, Chem. Soc. Rev. 2023, 52, 1456–1490.
- 78Z. Zhang, M. Kang, H. Tan, N. Song, M. Li, P. Xiao, D. Yan, L. Zhang, D. Wang, B. Z. Tang, Chem. Soc. Rev. 2022.
- 79H. Chen, Y. Wan, X. Cui, S. Li, C. S. Lee, Adv. Healthcare Mater. 2021, 10, e2101607.
- 80L. Chen, S. Yan, W.-J. Guo, L. Qiao, X. Zhan, B. Liu, H.-Q. Peng, Chem. Sci. 2024, 15, 16059–16068.
- 81Y. Wang, J. Liao, Y. Lyu, Q. Guo, Z. Zhu, X. Wu, J. Yu, Q. Wang, W.-H. Zhu, Adv. Funct. Mater. 2023, 33, 2301692.
- 82J. Zhang, D. Jiao, X. Qi, Y. Zhang, X. Liu, T. Pan, H. Gao, Z. Liu, D. Ding, G. Feng, Adv. Sci. 2025, 12, 2410405.
- 83G. Yang, J.-S. Ni, Y. Li, M. Zha, Y. Tu, K. Li, Angew. Chem. Int. Ed. 2021, 60, 5386–5393.
- 84S. Zhen, Z. Xu, M. Suo, T. Zhang, M. Lyu, T. Li, T. Zhang, M. Li, Z. Zhao, B. Z. Tang, Adv. Mater. 2025, 37, 2411133.
- 85Y. Nakano, K. F. Biegasiewicz, T. K. Hyster, Curr. Opin. Chem. Biol. 2019, 49, 16–24.
- 86L. Capaldo, D. Ravelli, European J. Org. Chem. 2017, 2017, 2056–2071.
- 87L. Capaldo, D. Ravelli, M. Fagnoni, Chem. Rev. 2022, 122, 1875–1924.
- 88Z. Fan, K.-X. Teng, Y.-Y. Xu, L.-Y. Niu, Q.-Z. Yang, Angew. Chem. Int. Ed. 2025, 64, e202413595.
- 89F. Han, X. Zhou, Z. Wang, L. Cai, H. Zhang, T. Shi, Z. Zhang, Y. Lu, K. Wu, S. Long, W. Sun, J. Du, J. Fan, X. Peng, Angew. Chem. Int. Ed. 2024, 63, e202408769.
- 90J. Sun, J. Peng, J. Zhou, X. Zhang, C. Zhu, R. Wang, F. Feng, S. Wang, Sci. China Chem. 2025, https://doi.org/10.1007/s11426-025-2604-6.