Red and Near-Infrared Emissive Organic Crystals: Molecular Design and Optoelectronic Applications
Dr. Linfeng Lan
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hongyu Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]
Search for more papers by this authorDr. Linfeng Lan
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hongyu Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Over the past decade, red-emissive organic molecular crystals have advanced through molecular design (donor-acceptor structures, π-conjugation) and crystal engineering to overcome aggregation-caused quenching and energy gap limitations. Featuring high quantum yields, tunable deep-red/NIR emission, and flexibility, they enable applications in flexible waveguides, lasers, and bio-integrated optoelectronics.
Abstract
Red-emissive organic materials play a pivotal role in optoelectronics, including displays, optical communications, organic lasers, and biomedicine, owing to their high penetration and low scattering properties. However, conventional polymer and thin-film emitters often face efficiency losses at long wavelengths and limited operational stability. Organic molecular crystals have emerged as promising alternatives by offering high purity, low defect density, and unique optical anisotropy. Among them, red-emissive organic molecular crystals (ROMCs) remain relatively underdeveloped compared to their blue and green counterparts. Moreover, the inherent brittleness of most crystals poses significant challenges for their integration into flexible and wearable devices. This review highlights recent advances in the design and development of ROMCs, emphasizing molecular and crystal engineering strategies to overcome photophysical limitations and impart mechanical flexibility. Emerging applications in organic lasers, optical waveguides, and bioimaging are discussed, alongside key challenges and future research directions. By bridging fundamental understanding and practical deployment, this perspective offers a comprehensive roadmap for the rational design of flexible, red-light-emitting crystalline materials for next-generation optoelectronic platforms.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623.
- 2H. Ding, X.-X. Zhou, J.-S. Wei, X.-B. Li, B.-T. Qin, X.-B. Chen, H.-M. Xiong, Carbon 2020, 167, 322–344.
- 3H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, F. Zhang, Angew. Chem. Int. Ed. 2019, 58, 10153–10157.
- 4X. Cai, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 9868–9886.
- 5J. Ge, Q. Jia, W. Liu, L. Guo, Q. Liu, M. Lan, H. Zhang, X. Meng, P. Wang, Adv. Mater. 2015, 27, 4169–4177.
- 6N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 2002, 295, 1506–1508.
- 7J. Shi, Y. Zhou, W. Wang, Z. Yang, P. Zhang, G. Liang, Chem. Eng. J. 2024, 492, 152419.
- 8J. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater. 2018, 6, 1800255.
- 9C.-T. Che, Chem. Mater. 2004, 16, 4389.
- 10J. Chen, W. Zhang, L. Wang, G. Yu, Adv. Mater. 2023, 35, 2210772.
- 11M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588–610.
- 12Y. Li, T. Liu, H. Liu, M.-Z. Tian, Y. Li, Acc. Chem. Res. 2014, 47, 1186–1198.
- 13D.-H. Kim, A. D'aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, C. Adachi, Nat. Photonics 2018, 12, 98–104.
- 14K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photonics 2017, 11, 63.
- 15M. A. El-Sayed, J. Chem. Phys. 1962, 36, 573–574.
- 16Y. Huang, J. Xing, Q. Gong, L.-C. Chen, G. Liu, C. Yao, Z. Wang, H.-L. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 2019, 10, 169.
- 17W. M. Awad, D. W. Davies, D. Kitagawa, J. Mahmoud Halabi, M. B. Al-Handawi, I. Tahir, F. Tong, G. Campillo-Alvarado, A. G. Shtukenberg, T. Alkhidir, Y. Hagiwara, M. Almehairbi, L. Lan, S. Hasebe, D. P. Karothu, S. Mohamed, H. Koshima, S. Kobatake, Y. Diao, R. Chandrasekar, H. Zhang, C. C. Sun, C. Bardeen, R. O. Al-Kaysi, B. Kahr, P. Naumov, Chem. Soc. Rev. 2023, 52, 3098–3169.
- 18P. Yu, Y. Zhen, H. Dong, W. Hu, Chem 2019, 5, 2814–2853.
- 19Q. Lv, M. Zheng, X.-D. Wang, L.-S. Liao, Small 2022, 18, 2203961.
- 20O. Sato, Nat. Chem. 2016, 8, 644–656.
- 21Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492–1530.
- 22X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538–544.
- 23H. U. Kim, S. Sohn, W. Choi, M. Kim, S. U. Ryu, T. Park, S. Jung, K. S. Bejoymohandas, J. Mater. Chem. C 2018, 6, 10640–10658.
- 24S. Hayashi, S.-Y. Yamamoto, D. Takeuchi, Y. Ie, K. Takagi, Angew. Chem. Int. Ed. 2018, 57, 17002–17008.
- 25Y. Xia, C. Zhu, F. Cao, Y. Shen, M. Ouyang, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202217547.
- 26S. Das, A. Mondal, C. M. Reddy, Chem. Soc. Rev. 2020, 49, 8878–8896.
- 27C. Wei, L. Li, Y. Zheng, L. Wang, J. Ma, M. Xu, J. Lin, L. Xie, P. Naumov, X. Ding, Q. Feng, W. Huang, Chem. Soc. Rev. 2024, 53, 3687–3713.
- 28L. Tu, Y. Xie, Z. Li, B. Tang, SmartMat 2021, 2, 326–346.
- 29H. U. Kim, T. Kim, C. Kim, M. Kim, T. Park, Adv. Funct. Mater. 2023, 33, 2208082.
- 30A. Oleson, T. Zhu, I. S. Dunn, D. Bialas, Y. Bai, W. Zhang, M. Dai, D. R. Reichman, R. Tempelaar, L. Huang, F. C. Spano, J. Phys. Chem. C 2019, 123, 20567–20578.
- 31R. Englman, J. Jortner, Mol. Phys. 1970, 18, 145–164.
- 32J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- 33F. D'souza, E. Maligaspe, K. Ohkubo, M. E. Zandler, N. K. Subbaiyan, S. Fukuzumi, J. Am. Chem. Soc. 2009, 131, 8787–8797.
- 34Y.-C. Chang, I. Chao, J. Phys. Chem. Lett. 2010, 1, 116–121.
- 35Y.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nat. Photonics 2020, 14, 570–577.
- 36T. Ishi-I, H. Tanaka, H. Koga, Y. Tanaka, T. Matsumoto, J. Mater. Chem. C 2020, 8, 12437–12444.
- 37M. K. Panda, N. Ravi, P. Asha, A. P. Prakasham, CrystEngComm 2018, 20, 6046–6053.
- 38Z. Lv, Z. Man, Z. Xu, L. Fu, S. Li, Y. Zhang, H. Fu, Adv. Opt. Mater. 2021, 9, 2100598.
- 39Y. Qi, Y. Wang, G. Ge, Z. Liu, Y. Yu, M. Xue, J. Mater. Chem. C 2017, 5, 11030–11038.
- 40B. Xu, Z. Song, M. Zhang, Q. Zhang, L. Jiang, C. Xu, L. Zhong, C. Su, Q. Ban, C. Liu, F. Sun, Y. Zhang, Z. Chi, Z. Zhao, G. Shi, Chem. Sci. 2021, 12, 15556–15562.
- 41P. Pattanayak, N. Modak, S. Guchhait, N. Ghosh, P. Purkayastha, Adv. Opt. Mater. 2024, 12, 2400404.
- 42K. Zheng, F. Ni, Z. Chen, C. Zhong, C. Yang, Angew. Chem. Int. Ed. 2020, 59, 9972–9976.
- 43B. Huang, W.-C. Chen, Z. Li, J. Zhang, W. Zhao, Y. Feng, B. Z. Tang, C.-S. Lee, Angew. Chem. Int. Ed. 2018, 57, 12473–12477.
- 44X. Wang, X. Wu, T. Wang, Y. Wu, H. Shu, Z. Cheng, L. Zhao, H. Tian, H. Tong, L. Wang, Chem. Commun. 2023, 59, 1377–1380.
- 45Z. Li, G. Jin, W. Yuan, B. Huang, X. Liang, Y. Tao, Dyes Pigm. 2022, 206, 110605.
- 46W. Yang, C. Xie, T. Chen, X. Yin, Q. Lin, S. Gong, Z. Quan, C. Yang, Angew. Chem. Int. Ed. 2024, 63, e202402704.
- 47Y. Gu, X. Sun, M. Wu, K. Wang, Phys. Chem. Chem. Phys. 2023, 25, 17264–17268.
- 48Z. Zhang, Z. Yu, M. Li, S. Zhen, J. Mater. Chem. C 2025, 13, 4480–4487.
- 49S. Chen, W. Zhang, W. Liu, Z. Ge, K.-P. Wang, L.-H. Gan, Z.-Q. Hu, CrystEngComm 2019, 21, 2809–2817.
- 50Z. Peng, Z. Wang, Z. Huang, S. Liu, P. Lu, Y. Wang, J. Mater. Chem. C 2018, 6, 7864–7873.
- 51S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed. 2017, 56, 12160–12164.
- 52Y. Zhang, X. Zheng, L. Zhang, Z. Yang, L. Chen, L. Wang, S. Liu, Z. Xie, Org. Biomol. Chem. 2020, 18, 707–714.
- 53Y. Wang, Y. Li, Q. Yan, X. Liu, G. Xia, Q. Shao, K. Liang, L. Hong, B. Chi, H. Wang, Dyes Pigm. 2020, 173, 107977.
- 54H. Tian, D. Li, X. Tang, Y. Zhang, Z. Yang, J. Qian, Y. Q. Dong, M. Han, Mater. Chem. Front. 2020, 4, 1634–1642.
- 55Y. Li, X. Fan, Y. Li, S. Liu, C. Chuah, Y. Tang, R. T. K. Kwok, J. W. Y. Lam, X. Lu, J. Qian, B. Z. Tang, ACS Nano 2022, 16, 3323–3331.
- 56S. Mu, K. Oniwa, T. Jin, N. Asao, M. Yamashita, S. Takaishi, Org. Electron. 2016, 34, 23–27.
- 57R. T. Cheriya, K. Nagarajan, M. Hariharan, J. Phys. Chem. C 2013, 117, 3240–3248.
- 58L. Lan, H. Liu, X. Yu, X. Liu, H. Zhang, Angew. Chem. Int. Ed. 2021, 60, 11283–11287.
- 59B. Tang, H. Zhang, X. Cheng, K. Ye, H. Zhang, ChemPlusChem 2016, 81, 1320–1325.
- 60X. Cheng, K. Wang, S. Huang, H. Zhang, H. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2015, 54, 8369–8373.
- 61X. Yu, B. Liu, X. Pan, H. Zhang, ChemPhotoChem 2022, 6, e202200038.
- 62Q. Chen, B. Tang, K. Ye, H. Zhang, Adv. Mater. 2024, 36, 2311762.
- 63L. Cao, B. Tang, X. Yu, K. Ye, H. Zhang, CrystEngComm 2021, 23, 5758–5762.
- 64Q. Chen, B. Tang, K. Ye, H. Hu, H. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202417459.
- 65H. Liu, Z. Lu, Z. Zhang, Y. Wang, H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 8448–8452.
- 66M. Rohullah, V. V. Pradeep, S. Singh, R. Chandrasekar, Nat. Commun. 2024, 15, 4040.
- 67Z. Cong, Y. Li, G. Xia, S. Shen, J. Sun, K. Xu, Z. Jiang, L. Jiang, Y. Chen, Q. Yu, H. Wang, Dyes Pigm. 2019, 162, 654–661.
- 68X. He, J. Zhao, Z. Tan, J. Zhao, X. Cheng, C. Zhou, CrystEngComm 2020, 22, 3110–3114.
- 69J. Peng, Y. Zhao, J. Yang, Y. Liu, J. Phys. Chem. Lett. 2024, 15, 7335–7341.
- 70M. Shimizu, Y. Takeda, M. Higashi, T. Hiyama, Angew. Chem. Int. Ed. 2009, 48, 3653–3656.
- 71M. Mandal, S. Mardanya, A. Saha, M. Singh, S. Ghosh, T. Chatterjee, R. Patra, S. Bhunia, S. Mandal, S. Mukherjee, R. Debnath, C. M. Reddy, M. Das, P. K. Mandal, Chem. Sci. 2025, 16, 901–909.
- 72J. N. Zhang, H. Kang, N. Li, S. M. Zhou, H. M. Sun, S. W. Yin, N. Zhao, B. Z. Tang, Chem. Sci. 2017, 8, 577–582.
- 73B. Tang, C. Wang, Y. Wang, H. Zhang, Angew. Chem. Int. Ed. 2017, 56, 12543–12547.
- 74B. Liu, Q. Di, W. Liu, C. Wang, Y. Wang, H. Zhang, J. Phys. Chem. Lett. 2019, 10, 1437–1442.
- 75B. Tang, B. Liu, H. Liu, H. Zhang, Adv. Funct. Mater. 2020, 30, 2004116.
- 76J. Peng, J. Bai, X. Cao, J. He, W. Xu, J. Jia, Chem.-Eur. J. 2021, 27, 16036–16042.
- 77B. Tang, S. Tang, C. Qu, K. Ye, Z. Zhang, H. Zhang, CCS Chem. 2023, 5, 2348–2357.
- 78R. Huang, B. Liu, C. Wang, Y. Wang, H. Zhang, J. Phys. Chem. C 2018, 122, 10510–10518.
- 79Z. Xiang, Z. Y. Wang, T. B. Ren, W. Xu, Y. P. Liu, X. X. Zhang, P. Wu, L. Yuan, X. B. Zhang, Chem. Commun. 2019, 55, 11462–11465.
- 80B. Zhang, J. Jiang, W. Wang, Q. Tu, R. Yu, J. Wang, M. S. Yuan, Mater. Chem. Front. 2022, 6, 613–622.
- 81H. Yu, X. Song, N. Xie, J. Wang, C. Li, Y. Wang, Adv. Funct. Mater. 2021, 31, 2007511.
- 82T. Nakagawa, S. Fu, K. Bu, D. Wang, M. Vrankić, P. Dalladay-Simpson, X. Yin, J. Zhang, Y. Wang, X. Lü, J. Zhao, H. Mao, Y. Ding, Carbon 2025, 233, 119873.
- 83X. Wang, Z. Z. Li, S. F. Li, H. Li, J. Chen, Y. Wu, H. Fu, Adv. Opt. Mater. 2017, 5, 1700027.
- 84Z. Xu, Z. Zhang, X. Jin, Q. Liao, H. Fu, Chem. Asian J. 2017, 12, 2985–2990.
- 85J. Zhu, Q. Liao, H. Huang, L. Fu, M. Liu, C. Gu, H. Fu, Cell Rep. Phys. Sci. 2022, 3, 100686.
- 86Z. Zhang, X. Song, S. Wang, F. Li, H. Zhang, K. Ye, Y. Wang, J. Phys. Chem. Lett. 2016, 7, 1697–1702.
- 87X. Cheng, Y. Zhang, S. Han, F. Li, H. Zhang, Y. Wang, Chem.-Eur. J. 2016, 22, 4899–4903.
- 88L. Wang, Z. Zhang, X. Cheng, K. Ye, F. Li, Y. Wang, H. Zhang, J. Mater. Chem. C 2015, 3, 499–505.
- 89L. Lan, Q. Di, L. Li, B. Liu, X. Yu, P. Naumov, H. Zhang, Cryst. Growth Des. 2022, 22, 3435–3441.
- 90J. X. Wang, H. Zhang, L. Y. Niu, X. Zhu, Y. F. Kang, R. Boulatov, Q. Z. Yang, CCS Chem. 2020, 2, 1391–1398.
- 91S. Ueda, K. Fujita, B. Sk, S. Hirata, J. Mater. Chem. C 2025, 13, 2654–2660.
- 92H.-H. Fang, S.-Y. Lu, L. Wang, R. Ding, H.-Y. Wang, J. Feng, Q.-D. Chen, H.-B. Sun, Org. Electron. 2013, 14, 389–395.
- 93X. Gai, G.-D. Ye, S.-R. Wang, S.-N. Chen, M.-H. An, Y.-N. Wang, R. Ding, Y. Liu, J. Feng, Org. Electron. 2022, 111, 106670.
- 94A. Obolda, W. Li, M. Abdulahat, F. Ma, B. Li, X. Ai, M. Zhang, F. Li, Org. Electron. 2022, 107, 106564.
- 95Y. Zhao, L. Wang, X. Chen, B. Zhang, F. Shen, H. Song, H. Wang, J. Mater. Chem. C 2019, 7, 13447–13453.
- 96A. Mandal, Y. Kim, S.-J. Kim, H. Park, CrystEngComm 2021, 23, 7132–7140.
- 97V. Kannan, T. Maadhu, P. Periyasamy, R. Loganathan, S. Sacratees, V. Sivaraman, S. Haydullakhan, V. Gandhiraj, P. Periyasamy, J. Solid State Chem. 2024, 330, 124457.
- 98J. Zhang, L. Yao, W. Li, Y. Zhang, T. Jin, G. Wang, J. Zhang, J. Zhao, CrystEngComm 2024, 26, 4777–4781.
- 99Y. Shen, S. Wang, X. Zhang, N. Li, H. Liu, B. Yang, CrystEngComm 2021, 23, 5918–5924.
- 100Z. Yin, Z. Xie, X. Zhang, Y. Xue, D. Zhang, B. Liu, Angew. Chem. Int. Ed. 2025, 64, e202417868.
- 101J.-X. Zhang, S. Zhao, J.-H. Jiang, Z.-J. Lv, J. Luo, Y. Shi, Z. Lu, X.-D. Wang, Small 2024, 20, 2400313.
- 102X. Zhang, J. De, H. Liu, Q. Liao, S.-T. Zhang, C. Zhou, H. Fu, B. Yang, Adv. Opt. Mater. 2022, 10, 2200286.
- 103H. Zhang, D.-Q. Lin, M.-Z. Wu, D. Jin, L. Huang, L.-H. Xie, Cryst. Growth Des. 2023, 23, 6548–6556.
- 104S. Ma, H. Sun, J. Chen, Y. Yu, H. Lu, S. Wang, J. Zhang, J. Zhao, G. Long, X.-D. Wang, Adv. Opt. Mater. 2023, 11, 2203087.
- 105W. Xiang, H. Sun, J. Zhang, S. Wang, C. Pan, L. Yao, S. Ma, W. Li, W. Dan, J. Zhang, Adv. Opt. Mater. 2024, 12, 2302462.
- 106Z.-Y. Jiang, Y. Zhang, X.-L. Gong, Y. Zhang, C. Du, A. Khan, R. Usman, M.-L. Wang, Cryst. Growth Des. 2024, 24, 9511–9526.
- 107J. Guo, L. Xu, M. Cai, Z. Dong, Q. Mu, X. Wang, H. Fan, F. Teng, X. He, H. Jiang, P. Hu, Cryst. Growth Des. 2024, 24, 1293–1301.
- 108C. Wang, J. Wang, N. Wu, M. Xu, X. Yang, Y. Lu, L. Zang, RSC Adv. 2017, 7, 2382–2387.
- 109Z. Zhao, Y. Cai, Q. Zhang, A. Li, T. Zhu, X. Chen, W. Z. Yuan, Nat. Commun. 2024, 15, 5054.
- 110X. Zhao, J. Gong, P. Alam, C. Ma, Y. Wang, J. Guo, Z. Zeng, Z. He, H. H. Y. Sung, I. D. Williams, K. S. Wong, S. Chen, J. W. Y. Lam, Z. Zhao, B. Z. Tang, CCS Chem. 2022, 4, 1912–1920.
- 111G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington, H. Bronstein, J. Am. Chem. Soc. 2019, 141, 18390–18394.
- 112A. Pal, M. Karmakar, S. R. Bhatta, A. Thakur, Coord. Chem. Rev. 2021, 448, 214167.
- 113M. Kim, D. R. Whang, J. Gierschner, S. Y. Park, J. Mater. Chem. C 2015, 3, 231–234.
- 114H. Gao, P. Xue, J. Peng, L. Zhai, M. Sun, J. Sun, R. Lu, New J. Chem. 2019, 43, 77–84.
- 115İ. H. Nazlı, G. Yakalı, D. Topkaya, M. İzmirli, S. D. Uzun, S. Alp, J. Fluoresc. 2023, 33, 1481–1494.
- 116D. Zhang, V. Martín, I. García-Moreno, A. Costela, M. E. Pérez-Ojeda, Y. Xiao, Phys. Chem. Chem. Phys. 2011, 13, 13026.
- 117H. Kim, W. Park, Y. Kim, M. Filatov, C. H. Choi, D. Lee, Nat. Commun. 2021, 12, 5409.
- 118Y. Yu, Y.-C. Tao, S.-N. Zou, Z.-Z. Li, C.-C. Yan, M.-P. Zhuo, X.-D. Wang, L.-S. Liao, Sci. China Chem. 2020, 63, 1477–1482.
- 119M.-J. Sun, Y. Liu, W. Zeng, Y. S. Zhao, Y.-W. Zhong, J. Yao, J. Am. Chem. Soc. 2019, 141, 6157–6161.
- 120Z. Zhao, T. Zhu, A. Li, Q. Zhang, W. Zhang Yuan, Angew. Chem. Int. Ed. 2025, 64, e202412967.
- 121M. Jiang, S. Li, C. Zhen, L. Wang, F. Li, Y. Zhang, W. Dong, X. Zhang, W. Hu, Front. Optoelectron. 2022, 15, 21.
- 122J. M. Halabi, E. Ahmed, L. Catalano, D. P. Karothu, R. Rezgui, P. Naumov, J. Am. Chem. Soc. 2019, 141, 14966–14970.
- 123K. Naim, M. Singh, S. Sharma, R. V. Nair, P. Venugopalan, S. Chandra Sahoo, P. P. Neelakandan, Chem.-Eur. J. 2020, 26, 11979–11984.
- 124T. Feiler, B. Bhattacharya, A. A. L. Michalchuk, S.-Y. Rhim, V. Schröder, E. List-Kratochvil, F. Emmerling, CrystEngComm 2021, 23, 5815–5825.
- 125D. P. Karothu, G. Dushaq, E. Ahmed, L. Catalano, M. Rasras, P. Naumov, Angew. Chem. Int. Ed. 2021, 60, 26151–26157.
- 126D. P. Karothu, G. Dushaq, E. Ahmed, L. Catalano, S. Polavaram, R. Ferreira, L. Li, S. Mohamed, M. Rasras, P. Naumov, Nat. Commun. 2021, 12, 1326.
- 127S. Ji, M. Zeng, X. Zhan, H. Liu, Y. Zhou, K. Wang, Y. Yan, J. Yao, Y. Zhao, J. Am. Chem. Soc. 2024, 146, 22583–22589.
- 128L. Lan, L. Li, P. Naumov, H. Zhang, Chem. Mater. 2023, 35, 7363–7385.
- 129M. Annadhasan, S. Basak, N. Chandrasekhar, R. Chandrasekar, Adv. Opt. Mater. 2020, 8, 2000959.
- 130S. Wengert, G. Csányi, K. Reuter, J. T. Margraf, Chem. Sci. 2021, 12, 4536–4546.
- 131H. M. Johnson, F. Gusev, J. T. Dull, Y. Seo, R. D. Priestley, O. Isayev, B. P. Rand, J. Am. Chem. Soc. 2024, 146, 21583–21590.