Covalent Elaboration of Confined Surfaces Steers C─C Coupling Pathway for Selective Electrochemical CO2 Reduction at Ampere-Level
Dr. Simeng Li
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorMingzi Sun
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorKai Zhang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorXin Cai
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorYanpeng Chen
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorDr. Chao Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorZhi Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorXing Tang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Shihe Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDr. Simeng Li
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorMingzi Sun
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorKai Zhang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorXin Cai
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorYanpeng Chen
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorDr. Chao Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorZhi Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorXing Tang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Shihe Yang
Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A novel gasphilic Cu2O nanoparticle dispersed within the hierarchically porous carbon matrix as a high-efficiency CO2RR electrocatalyst switches in the reaction pathways from ethanol to ethylene during CO2RR at ampere-level current, depending on the multiscale microenvironment engineering. The Faradaic efficiency (FE) of ethylene achieved is as high as ∼71% with a partial current density of 513.6 mA cm−2.
Abstract
Microenvironmental engineering of electrocatalysts is pivotal for directing reaction pathways and stabilizing key intermediates in CO2 reduction reaction (CO2RR) to multicarbon products, but it has yet to meet the industrial requirement for selectively producing a most desired product, such as ethylene or ethanol, at a steady above-ampere current level. Herein, a topotactic conversion cum covalent functionalization strategy is invoked to craft a catalyst with confined and modulated surfaces that can bias the reaction heavily for ethylene production with a 22-fold boost in the ethylene/ethanol ratio. The well-tuned covalent structural motif of ─Si─O─Cu─ on PDMS-Cu2O/C dramatically elevates the C2H4-forming activity with a faradaic efficiency reaching up to 71% and a high partial current density of 513.6 mA cm−2. Operando infrared spectroscopy and density functional theory calculations unveil the ultralow coordination number and the upshifted d-band center. Notably, modulating the d-band center with the covalently elaborated surfaces allows control of the adsorption energies of CHO* and other intermediates along the ethylene path, largely lowering energy barriers for the key steps, particularly the formation of CH2CHO*. This work sheds light on the microenvironment modulation at the surface bonding to mesoscopic scales to precisely control catalytic processes and steer reaction pathways toward the target product.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202508366-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Rogelj, O. Geden, A. Cowie, A. Reisinger, Nature 2021, 591, 365–368.
- 2A. Shayesteh Zeraati, F. Li, T. Alkayyali, R. Dorakhan, E. Shirzadi, F. Arabyarmohammadi, C. P. O'Brien, C. M. Gabardo, J. Kong, A. Ozden, Nat. Synth. 2025, 4, 75–83.
- 3C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. M. Dowell, J. C. Minx, P. Smith, C. K. Williams, Nature 2019, 575, 87–97.
- 4R. Cai, H. Zhu, F. Yang, M. Ju, X. Huang, J. Wang, M. D. Gu, J. Gao, S. Yang, Angew. Chem. Int. Ed. 2025, 64, e202424098.
- 5D. Gao, R. M. Arán-Ais, H. S. Jeon, B. R. Cuenya, Nat. Catal. 2019, 2, 198–210.
- 6M. Fang, X. Miao, Z. Huang, M. Wang, X. Feng, Z. Wang, Y. Zhu, L. Dai, L. Jiang, J. Am. Chem. Soc. 2024, 146, 27060–27069.
- 7Y.-C. Zhang, X.-L. Zhang, Z.-Z. Wu, Z.-Z. Niu, L.-P. Chi, F.-Y. Gao, P.-P. Yang, Y.-H. Wang, P.-C. Yu, J.-W. Duanmu, Proc. Natl. Acad. Sci. USA 2024, 121, e2400546121.
- 8P. Lu, J. Lv, Y. Chen, Y. Ma, Y. Wang, W. Lyu, J. Yu, J. Zhou, J. Yin, Y. Xiong, Nano Lett. 2024, 24, 1553–1562.
- 9J. Jiao, X. Kang, J. Yang, S. Jia, Y. Peng, S. Liu, C. Chen, X. Xing, M. He, H. Wu, J. Am. Chem. Soc. 2024, 146, 15917–15925.
- 10Q. Li, J. Wu, C. Yang, S. Li, C. Long, Z. Zhuang, Q. Li, Z. Guo, X. Huang, Z. Tang, J. Am. Chem. Soc 2025, 147, 6688–6697.
- 11Z. Wang, Y. Li, X. Zhao, S. Chen, Q. Nian, X. Luo, J. Fan, D. Ruan, B.-Q. Xiong, X. Ren, J. Am. Chem. Soc. 2023, 145, 6339–6348.
- 12S. You, J. Xiao, S. Liang, W. Xie, T. Zhang, M. Li, Z. Zhong, Q. Wang, H. He, Energy Environ. Sci. 2024, 17, 5795–5818.
- 13J. Chen, H. Qiu, Y. Zhao, H. Yang, L. Fan, Z. Liu, S. Xi, G. Zheng, J. Chen, L. Chen, Nat. Commun. 2024, 15, 5893.
- 14F. Calle-Vallejo, M. Koper, Angew. Chem. Int. Ed. 2013, 52, 7282–7285.
- 15C. Zhan, F. Dattila, C. Rettenmaier, A. Herzog, M. Herran, T. Wagner, F. Scholten, A. Bergmann, N. López, B. R. Cuenya, Nat. Energy 2024, 9, 1485–1496.
- 16R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. Koper, J. Am. Chem. Soc. 2015, 6, 4073–4082.
- 17C. Zhang, Z. Lin, L. Jiao, H. L. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202414506.
- 18X. Cao, S. Ren, X. Zhang, Q. Fan, Q. Chen, J. Yang, J. Mao, Chem 2024, 10, 2089–2102.
- 19K.-Y. Wang, Z. Yang, J. Zhang, S. Banerjee, E. A. Joseph, Y.-C. Hsu, S. Yuan, L. Feng, H.-C. Zhou, Nat. Protoc. 2023, 18, 604–625.
- 20N. X. Zhu, Z. W. Wei, C. X. Chen, D. Wang, C. C. Cao, Q. F. Qiu, J. J. Jiang, H. P. Wang, C. Y. Su, Angew. Chem. Int. Ed. 2019, 131, 17189–17196.
- 21J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850–13851.
- 22W. Zhang, T. Wu, Y. Zheng, Y. Wang, Z. Xie, M. Zheng, Y. Liu, Y. Liang, L. Liu, Adv. Funct. Mater. 2024, 34, 2404795.
- 23Y. Lou, Z. Lin, J. Shen, J. Sun, N. Wang, Z. Chen, R. Huang, X. Rui, X. Wu, H. Yang, Adv. Mater. 2025, 37, 2416136.
- 24X. Cheng, R. Zhao, S. Wang, J. Meng, Adv. Mater. 2024, 36, 2407315.
- 25W. Jiang, Y. Yin, X. Liu, X. Yin, Y. Shi, L. Sun, J. Am. Chem. Soc. 2013, 135, 8137–8140.
- 26S. C. Qi, X. Y. Qian, Q. X. He, K. J. Miao, Y. Jiang, P. Tan, X. Q. Liu, L. B. Sun, Angew. Chem. Int. Ed. 2019, 58, 10104–10109.
- 27Q. Shi, F. Wu, H. Wang, Y. Lu, J. Dong, J. Zhao, Y. Guan, B. Zhang, R. Tang, Y. Liu, Energy Storage Mater. 2024, 67, 103264.
- 28S. Li, H. Duan, J. Yu, C. Qiu, R. Yu, Y. Chen, Y. Fang, X. Cai, S. Yang, ACS Catal. 2022, 12, 9074–9082.
- 29C. Liu, Y. Jiang, T. Wang, Q. Li, Y. Liu, Adv. Sci. 2023, 10, 2207429.
- 30X. Li, J. Pang, Y. Zhao, P. Wu, W. Yu, P. Yan, Y. Su, M. Zheng, Chin. J. Catal. 2023, 49, 91–101.
- 31D. Wang, L. Li, Q. Xia, S. Hong, L. Hao, A. W. Robertson, Z. Sun, ACS Sustain. Chem. Eng. 2022, 10, 11451–11458.
- 32P. Peng, S. Moldovan, A. Vicente, V. Ruaux, M. Debost, H. Hu, H. A. Aleksandrov, G. N. Vayssilov, Z.-F. Yan, S. Mintova, Microporous Mesoporous Mater. 2023, 357, 112625.
- 33J. Li, A. Ozden, M. Wan, Y. Hu, F. Li, Y. Wang, R. R. Zamani, D. Ren, Z. Wang, Y. Xu, D.-H. Nam, J. Wicks, B. Chen, X. Wang, M. Luo, M. Graetzel, F. Che, E. H. Sargent, D. Sinton, Nat. Commun. 2021, 12, 2808.
- 34H. Bao, Y. Qiu, X. Peng, J.-a. Wang, Y. Mi, S. Zhao, X. Liu, Y. Liu, R. Cao, L. Zhuo, Nat. Commun. 2021, 12, 238.
- 35Q. Geng, L. Fan, H. Chen, C. Zhang, Z. Xu, Y. Tian, C. Yu, L. Kang, Y. Yamauchi, C. Li, J. Am. Chem. Soc. 2024, 146, 10599–10607.
- 36J. Zhang, G. Zeng, S. Zhu, H. Tao, Y. Pan, W. Lai, J. Bao, C. Lian, D. Su, M. Shao, Proc. Natl. Acad. Sci. USA 2023, 120, e2218987120.
- 37J. Zhang, L. Huang, W. W. Tjiu, C. Wu, M. Zhang, S. Bin Dolmanan, S. Wang, M. Wang, S. Xi, Z. Aabdin, J. Am. Chem. Soc. 2024, 146, 30708–30714.
- 38L. Xiong, X. Fu, Y. Zhou, P. Nian, Z. Wang, Q. Yue, ACS Catal. 2023, 13, 6652–6660.
- 39C. Zhan, F. Dattila, C. Rettenmaier, A. Bergmann, S. Kühl, R. García-Muelas, N. r. López, B. R. Cuenya, ACS Catal. 2021, 11, 7694–7701.
- 40H. Ma, E. Ibáñez-Alé, F. You, N. López, B. S. Yeo, J. Am. Chem. Soc. 2024, 146, 30183–30193.
- 41Z. Li, B. Sun, D. Xiao, H. Liu, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, B. Huang, Angew. Chem. Int. Ed. 2025, 64, e202413832.
- 42Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh, C. Chen, M. V. Fonseca Guzman, J. Feijóo, P.-C. Chen, H. Wang, Nature 2023, 614, 262–269.
- 43P.-C. Chen, C. Chen, Y. Yang, A. L. Maulana, J. Jin, J. Feijoo, P. Yang, J. Am. Chem. Soc. 2023, 145, 10116–10125.
- 44P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang, S.-Z. Qiao, Nat. Commun. 2022, 13, 3754.
- 45X. Chang, S. Vijay, Y. Zhao, N. J. Oliveira, K. Chan, B. Xu, Nat. Commun. 2022, 13, 2656.
- 46Y. Hao, F. Hu, S. Zhu, Y. Sun, H. Wang, L. Wang, Y. Wang, J. Xue, Y. F. Liao, M. Shao, Angew. Chem. Int. Ed. 2023, 135, e202304179.
- 47X. Qiu, H. Zhu, J. Huang, P. Liao, X. Chen, J. Am. Chem. Soc. 2021, 143, 7242–7246.
- 48Y. Deng, M. Batmunkh, L. Ye, C. Song, T. Ge, Y. Xu, X. Mu, W. Liu, X. Jin, P. K. Wong, Adv. Funct. Mater. 2022, 32, 2110026.
- 49R. Zhang, H. Wang, S. Tang, C. Liu, F. Dong, H. Yue, B. Liang, ACS Catal. 2018, 8, 9280–9286.
- 50D. Zhong, Q. Fang, R. Du, Y. Jin, C. Peng, D. Cheng, T. Li, T. Zhao, S. Zhang, Y. Zheng, Angew. Chem. Int. Ed. 2025, e202501773, https://doi.org/10.1002/ange.202501773.
- 51R. Cai, M. Sun, F. Yang, M. Ju, Y. Chen, M. D. Gu, B. Huang, S. Yang, Chem 2024, 10, 211–233.