p–π Conjugation-Promoted Electrochemiluminescence of Halogenated Covalent Organic Framework Nanoemitters
Hanlin Hou
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371 Singapore
These authors contributed equally to this work.
Search for more papers by this authorYuting Wu
State Key Laboratory of Precision and Intelligent Chemistry, Hefei National Laboratory, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorJiacheng Wan
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Rengan Luo
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lina Wu
State Key Laboratory of Microbial Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanli Zhao
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojun Wu
State Key Laboratory of Precision and Intelligent Chemistry, Hefei National Laboratory, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Jianping Lei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorHanlin Hou
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371 Singapore
These authors contributed equally to this work.
Search for more papers by this authorYuting Wu
State Key Laboratory of Precision and Intelligent Chemistry, Hefei National Laboratory, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorJiacheng Wan
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Rengan Luo
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lina Wu
State Key Laboratory of Microbial Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanli Zhao
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371 Singapore
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojun Wu
State Key Laboratory of Precision and Intelligent Chemistry, Hefei National Laboratory, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Jianping Lei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
We design a series of halogenated COF nanoemitters via a covalent halogenation predesign strategy. The introduction of halogen atoms facilitates p–π conjugation within COF skeleton, leading to a 49-fold ECL enhancement compared to nonhalogenated COF. Furthermore, the performance of four partially brominated COFs establishes a positive correlation between the degree of Br doping and ECL intensity.
Abstract
Covalent organic frameworks (COFs) are a kind of promising electrochemiluminescence (ECL) crystalline nanoemitters due to their rapid intrareticular charge transfer and predesigned structures. However, the high polarization of heteroatom-containing linkages impedes the charge transfer within reticular structures. In this study, we construct a series of halogenated COFs nanoemitters composed of terephthalaldehyde ortho-substitutions and 1,3,6,8-tetrakis(4-aminophenyl)pyrene ligands via a covalent halogenation predesign strategy. The incorporation of covalently bonded halogen atoms promotes a dense electron population in carbon–carbon antibonding molecular orbitals, thereby facilitating efficient p–π conjugation within the COF structure. Based on the improved intrareticular charge transfer along carbon skeleton, as evidenced by the Hall effect and terahertz spectroscopy, the brominated COF demonstrates a 49-fold enhancement in ECL intensity compared to nonhalogenated COF. Furthermore, the performance of four partially brominated COFs establishes a positive correlation between the degree of Br doping and ECL intensity. Beyond the corresponding model compounds, the conjugated frameworks of COFs significantly amplify the halogenation-induced enhancement effect. This halogenation-promoted p–π conjugation in reticular skeleton provides a universal strategy to sensitize crystalline nanoemitters for decoding ECL enhancement mechanism.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202506309-sup-0001-SuppMat.docx21.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244–249.
- 2Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science 2002, 296, 1293–1297.
- 3R. Luo, D. Zhu, H. Ju, J. Lei, Acc. Chem. Res. 2023, 56, 1920–1930.
- 4J. Descamps, C. Colin, G. Tessier, S. Arbault, N. Sojic, Angew. Chem. Int. Ed. 2023, 62, e202218574.
- 5Z. Cao, C. Li, Y. Shu, M. Zhu, B. Su, H. Qin, X. Peng, J. Am. Chem. Soc. 2023, 145, 26425–26434.
- 6L. S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 2020, 120, 8536–8580.
- 7Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A. H. Alawadhi, M. M. Abduljawad, M. O. Alawad, L. Gagliardi, J. Sauer, O. M. Yaghi, Nature 2024, 635, 96–101.
- 8B. Yu, R.-B. Lin, G. Xu, Z.-H. Fu, H. Wu, W. Zhou, S. Lu, Q.-W. Li, Y. Jin, J.-H. Li, Z. Zhang, H. Wang, Z. Yan, X. Liu, K. Wang, B. Chen, J. Jiang, Nat. Chem. 2024, 16, 114–121.
- 9Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu, H. Yang, G. I. N. Waterhouse, X. Wang, S. Ma, Nat. Commun. 2023, 14, 1106.
- 10J.-M. Seo, H.-J. Noh, J.-P. Jeon, H. Kim, G.-F. Han, S. K. Kwak, H. Y. Jeong, L. Wang, F. Li, J.-B. Baek, J. Am. Chem. Soc. 2022, 144, 19973–19980.
- 11N. Keller, T. Bein, Chem. Soc. Rev. 2021, 50, 1813–1845.
- 12M. Souto, D. F. Perepichka, J. Mater. Chem. C 2021, 9, 10668–10676.
- 13A. Volkov, J. Mi, K. Lalit, P. Chatterjee, D. Jing, S. L. Carnahan, Y. Chen, S. Sun, A. J. Rossini, W. Huang, L. M. Stanley, J. Am. Chem. Soc. 2023, 145, 6230–6239.
- 14L. Zou, R. Sa, H. Zhong, H. Lv, X. Wang, R. Wang, ACS Catal. 2022, 12, 3550–3557.
- 15X.-T. Li, M.-J. Li, Y.-L. Tian, S.-L. Han, L. Cai, H.-C. Ma, Y.-Q. Zhao, G.-J. Chen, Y.-B. Dong, Nat. Commun. 2024, 15, 8484.
- 16H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905–912.
- 17O. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks, Wiley-VCH, Weinheim, Germany 2019, pp. 497–509.
10.1002/9783527821099.index Google Scholar
- 18Y.-J. Li, W.-R. Cui, Q.-Q. Jiang, Q. Wu, R.-P. Liang, Q.-X. Luo, J.-D. Qiu, Nat. Commun. 2021, 12, 4735.
- 19W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y.-B. Zhang, K. Wen, Angew. Chem. Int. Ed. 2021, 60, 1869–1874.
- 20Q.-J. Wu, J. Liang, Y.-B. Huang, R. Cao, Acc. Chem. Res. 2022, 55, 2978–2997.
- 21Q.-J. Wu, D.-H. Si, Q. Wu, Y.-L. Dong, R. Cao, Y.-B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202215687.
- 22Y.-Y. Liu, C.-L. Song, W.-J. Zeng, K.-G. Zhou, Z.-F. Shi, C.-B. Ma, F. Yang, H.-L. Zhang, X. Gong, J. Am. Chem. Soc. 2010, 132, 16349–16351.
- 23C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208–2267.
- 24H. Gommans, T. Aernouts, B. Verreet, P. Heremans, A. Medina, C. G. Claessens, T. Torres, Adv. Funct. Mater. 2009, 19, 3435–3439.
- 25Y. Chen, D. Jiang, Acc. Chem. Res. 2024, 57, 3182–3193.
- 26H. Saigusa, T. Azumi, J. Chem. Phys. 1979, 71, 1408–1413.
- 27C. Baleizão, M. N. Berberan-Santos, ChemPhysChem 2010, 11, 3133–3140.
- 28E. Hamzehpoor, C. Ruchlin, Y. Tao, C.-H. Liu, H. M. Titi, D. F. Perepichka, Nat. Chem. 2023, 15, 83–90.
- 29U. Mayerhöffer, B. Fimmel, F. Würthner, Angew. Chem. Int. Ed. 2012, 51, 164–167.
- 30B. Janhsen, C. G. Daniliuc, A. Studer, Chem. Sci. 2017, 8, 3547–3553.
- 31X.-H. Han, K. Gong, X. Huang, J.-W. Yang, X. Feng, J. Xie, B. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202912.
- 32C. Kang, K. Yang, Z. Zhang, A. K. Usadi, D. C. Calabro, L. S. Baugh, Y. Wang, J. Jiang, X. Zou, Z. Huang, D. Zhao, Nat. Commun. 2022, 13, 1370.
- 33P. J. Waller, Y. S. AlFaraj, C. S. Diercks, N. N. Jarenwattananon, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 9099–9103.
- 34T. Liu, Q. Tao, Y. Wang, R. Luo, J. Ma, J. Lei, J. Am. Chem. Soc. 2024, 146, 18958–18966.
- 35R. Luo, X. Luo, H. Xu, S. Wan, H. Lv, B. Zou, Y. Wang, T. Liu, C. Wu, Q. Chen, S. Yu, P. Dong, Y. Tian, K. Xi, S. Yuan, X. Wu, H. Ju, J. Lei, J. Am. Chem. Soc. 2024, 146, 16681–16688.
- 36S. Brend'amour, J. Gilmer, M. Bolte, H.-W. Lerner, M. Wagner, Chem. - Eur. J. 2018, 24, 16910–16918.
- 37X. Chen, M. Addicoat, S. Irle, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 546–549.
- 38P. Dong, X. Xu, T. Wu, R. Luo, W. Kong, Z. Xu, S. Yuan, J. Zhou, J. Lei, Angew. Chem. Int. Ed. 2024, 63, e202405313.
- 39Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye, C. Sun, Z. Sun, M. Luo, S. Guo, Nat. Synth. 2025, 4, 134–141.
- 40P. Dong, X. Xu, R. Luo, S. Yuan, J. Zhou, J. Lei, J. Am. Chem. Soc. 2023, 145, 15473–15481.
- 41W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902–16909.
- 42R. Chen, Y. Wang, Y. Ma, A. Mal, X.-Y. Gao, L. Gao, L. Qiao, X.-B. Li, L.-Z. Wu, C. Wang, Nat. Commun. 2021, 12, 1354.
- 43S. A. Sharber, W. J. Mullin, S. W. Thomas, Chem. Mater. 2021, 33, 6640–6661.
- 44R. Luo, H. Lv, Q. Liao, N. Wang, J. Yang, Y. Li, K. Xi, X. Wu, H. Ju, J. Lei, Nat. Commun. 2021, 12, 6808.
- 45Y. Han, X. Ren, T. Wu, Y. Lei Li, H. Ma, Z. Ru, Y. Jia, Z. Feng Gao, Y. Du, D. Wu, Q. Wei, Angew. Chem. Int. Ed. 2025, 64, e202414073.
- 46T. Zhu, T. Yang, Q. Zhang, W. Z. Yuan, Nat. Commun. 2022, 13, 2658.
- 47M. Wang, M. Wang, H.-H. Lin, M. Ballabio, H. Zhong, M. Bonn, S. Zhou, T. Heine, E. Cánovas, R. Dong, X. Feng, J. Am. Chem. Soc. 2020, 142, 21622–21627.
- 48H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 2022, 61, e202202328.
- 49A. Fracassa, F. Calogero, G. Pavan, P. Nikolaou, A. Fermi, P. Ceroni, F. Paolucci, P. G. Cozzi, T. Scattolin, N. Demitri, F. Negri, A. Gualandi, A. Aliprandi, G. Valenti, Chem. Sci. 2024, 15, 17892–17899.
- 50R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, M. Bonn, Rev. Mod. Phys. 2011, 83, 543–586.
- 51E. Jin, K. Geng, S. Fu, S. Yang, N. Kanlayakan, M. A. Addicoat, N. Kungwan, J. Geurs, H. Xu, M. Bonn, H. I. Wang, J. Smet, T. Kowalczyk, D. Jiang, Chem 2021, 7, 3309–3324.
- 52M. Wang, M. Ballabio, M. Wang, H.-H. Lin, B. P. Biswal, X. Han, S. Paasch, E. Brunner, P. Liu, M. Chen, M. Bonn, T. Heine, S. Zhou, E. Cánovas, R. Dong, X. Feng, J. Am. Chem. Soc. 2019, 141, 16810–16816.
- 53S. Fu, E. Jin, H. Hanayama, W. Zheng, H. Zhang, L. Di Virgilio, M. A. Addicoat, M. Mezger, A. Narita, M. Bonn, K. Müllen, H. I. Wang, J. Am. Chem. Soc. 2022, 144, 7489–7496.
- 54C.-L. Sun, J. Li, H.-W. Geng, H. Li, Y. Ai, Q. Wang, S.-L. Pan, H.-L. Zhang, Chem. Asian J. 2013, 8, 3091–3100.
- 55E. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2012, 2, 1–42.
- 56A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
- 57B. Li, Y. Lu, X. Huang, N. Sojic, D. Jiang, B. Liu, Angew. Chem. Int. Ed. 2025, 64, e202421658.